matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemePotenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - Potenzen
Potenzen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:50 Mi 08.01.2014
Autor: nutzername2020

Aufgabe
können 2 zahlen gewählt werden (a,b) aus 0-10 ,sodass die summer beider zahlen 10 ergibt und das produkt aus der 3 potenz der einen zahl und der 2 potenz der anderen zahl maximal wird?

wäre das durch reines logisches überlegen möglich?
verstehe zwar nicht ganz die aufgabe aber mein vorschlag wäre [mm] 9^3 [/mm] und [mm] 1^2 [/mm] zu wählen




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mi 08.01.2014
Autor: DieAcht

Hallo,


> können 2 zahlen gewählt werden (a,b) aus 0-10 ,sodass die
> summer beider zahlen 10 ergibt und das produkt aus der 3
> potenz der einen zahl und der 2 potenz der anderen zahl
> maximal wird?
>  wäre das durch reines logisches überlegen möglich?

Mal sehen.

>  verstehe zwar nicht ganz die aufgabe aber mein vorschlag
> wäre [mm]9^3[/mm] und [mm]1^2[/mm] zu wählen

Du musst dann aber auch das Problem lösen.

Sei [mm] N:=\{n\in\IN_0\colon0\le n\le10\}. [/mm]

Es soll gelten:

      $a+b=10$ mit [mm] $a,b\in [/mm] N$

Möglichkeiten:

0+10
1+9
2+8
3+7
4+6
5+5
6+4
7+3
8+2
9+1
10+0

Nun sollst du $c$ durch die folgende Gleichung maximieren:

      [mm] a^3*b^2=c [/mm]

Jetzt gehst du alles durch und erhältst die Lösung.

Das meinst du bestimmt mit einer "logischen" Lösung.
Das kannst du aber auch schöner lösen ;-)


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
DieAcht

Bezug
                
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Mi 08.01.2014
Autor: nutzername2020

noch einmal danke, für die schnelle und gute antwort!

ja das war auch meine überlegung, klang für mich aber zu einfach..

aber wie meinst du das mit schöner lösen?
a³+b²=c
wie sollte ich dann die gleichung auflösen damit ich auch die korrekte lösung komme?

Bezug
                        
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Mi 08.01.2014
Autor: DieAcht

[mm] N:=\{n\in\IN_0\colon 0\le n\le10\} [/mm]

Es gilt:

      [mm] a^3\ge b^2 [/mm] für alle [mm] $a,b\in [/mm] N$

Daher interessieren uns nur diese Lösungen:

$10+0$
$9+1$
$8+2$
$7+3$
$6+4$
$5+5$

Mit scharfem Blick erkennt man sofort, dass [mm] $6^3*4^2=c$ [/mm] die gesuchte Lösung ist.

Du könntest aber auch mit Lagrange alles durchrechnen.

[mm] f(a,b):=a^3b^2\longrightarrow [/mm] maximieren!
$g(a,b):=a+b-10$

[mm] L(a,b,\lambda)=a^3b^2+\lambda(a+b-10) [/mm]

[mm] \ldots [/mm]

Ob das einfacher wird, weiß ich allerdings nicht ;-)


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]