matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesPotentiale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Potentiale
Potentiale < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potentiale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Sa 31.12.2011
Autor: dodo4ever

Hallo sehr geehrter Matheraum und zunächst einmal ein frohes neues Jahr.

Ich habe leider ein kleines Problem mit folgender Aufgabe:

Für welche Funktionen f besitzt die Funktion (x,y,z) [mm] \mapsto q(x,y,z)=\pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)} [/mm] ein Potential? Bestimme diese Potentiale.


Die Existenz eines Potential folgt ja aus der Wirbelfreiheit, d.h. rot q=0 und der Konvexität der Funktion.

rot [mm] q=\nabla \times [/mm] q = [mm] \pmat{ \bruch{\partial}{\partial x} \\ \bruch{\partial}{\partial y} \\ \bruch{\partial}{\partial z}} \times \pmat{ f(x,y,z) \\ z cos(y)+cos(z) \\ sin(y)-ysin(z)}=\pmat{ \bruch{\partial}{\partial y}(sin(y)-ysin(z))-\bruch{\partial}{\partial z}(z cos(y)+cos(z)) \\ \bruch{\partial}{\partial z}(f(x,y,z))-\bruch{\partial}{\partial x}(sin(y)-ysin(z)) \\ \bruch{\partial}{\partial x}(zcos(y)+cos(z))-\bruch{\partial}{\partial y}(f(x,y,z))} [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ \bruch{\partial}{\partial z}f(x,y,z)-0 \\ 0-\bruch{\partial}{\partial y}f(x,y,z)}=\pmat{0 \\ 0 \\ 0} [/mm]


Es muss ja demnach gelten: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0 [/mm]


Ich entscheide mich somit z.B. für die Funktion [mm] f(x,y,z)=x^2 [/mm]

[mm] \Rightarrow \pmat{cosy-cosy \\ 0-0 \\ 0-0}=\pmat{0 \\ 0 \\ 0} [/mm]


Das Potential [mm] \varphi [/mm] soll nun aus der Bedingung [mm] -\vec{F}=\nabla \varphi [/mm] berechnet werden

[mm] \bruch{\partial \varphi}{\partial x}=-F_1 [/mm]
[mm] \bruch{\partial \varphi}{\partial y}=-F_2 [/mm]
[mm] \bruch{\partial \varphi}{\partial z}=-F_3 [/mm]

bzw. (1) [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm]
bzw. (2) [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm]
bzw. (3) [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm]


Im 1. Schritt möchte ich nun (1), also [mm] \bruch{\partial \varphi}{\partial x}=-x^2 [/mm] nach x integrieren.

Ich erhalte [mm] \varphi (x,y,z)=-\integral x^2 dx+C(y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm]

Wobei C(y,z) eine Konstante bzgl. x ist.


Im 2. Schritt setze ich nun [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3+C(y,z) [/mm] in (2), also [mm] \bruch{\partial \varphi}{\partial y}=-zcos(y)-cos(z) [/mm] ein, um C(y,z) zu berechnen.

Ich erhalte [mm] \bruch{\partial}{\partial y}(-\bruch{1}{3}x^3+C(y,z))=-zcos(y)-cos(z) [/mm] und es ergibt sich somit [mm] \bruch{\partial}{\partial y}C(y,z)=-zcos(y)-cos(z) [/mm]

[mm] \Rightarrow C(y,z)=-\integral{zcos(y)-cos(z) dy+D(z)}=-zsin(y)-ycos(z)+D(z) [/mm]

[mm] \Rightarrow \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm]

Wobei D(z) eine konstante bzgl. y ist.


Im letzten Schritt möchte ich nun D(z) berechnen, indem ich [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z) [/mm] in (3), also  [mm] \bruch{\partial \varphi}{\partial z}=-sin(y)+ysin(z) [/mm] einsetze.

Ich erhalte [mm] \bruch{\partial}{\partial z}(-\bruch{1}{3}x^3-zsin(y)-ycos(z)+D(z))=-sin(y)+ysin(z) [/mm]

[mm] \Rightarrow{-sin(y)+ysin(z)+D'(z)=-sin(y)+ysin(z)} [/mm]

D'(z)=0 bzw. [mm] D'(z)=C_0 [/mm]

und es ergibt sich somit das Potential [mm] \varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+C_0 [/mm]


Meine Frage besteht nun darin zu fragen, ob es prinzipiell reicht zu sagen, dass Jede Funktion f ein Potential besitzt, für die folgendes gilt: [mm] \bruch{\partial}{\partial z}f(x,y,z)=0 [/mm] und  [mm] \bruch{\partial}{\partial y}f(x,y,z)=0, [/mm] denn für alle anderen Fälle wäre das Vektorfeld ja nicht Wirbelfrei.

Es geht somit z.B. auf für [mm] x^k [/mm] mit k [mm] \in \IR [/mm]


Hoffe ihr könnt mir helfen. mfg dodo4ever

        
Bezug
Potentiale: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 So 01.01.2012
Autor: chrisno

Vorweg: ich finde keine wesentlichen Fehler, habe aber ein paar Anmerkungen. Allerdings liegt mien Training zu diesem Thema Jahrzehnte zurück.

>

.....

>  
> [mm]\Rightarrow \pmat{cosy-cosy \\ \bruch{\partial}{\partial z}f(x,y,z)-0 \\ 0-\bruch{\partial}{\partial y}f(x,y,z)}=\pmat{0 \\ 0 \\ 0}[/mm]
>  

cos y - cos y = 0

>
> Es muss ja demnach gelten: [mm]\bruch{\partial}{\partial z}f(x,y,z)=0[/mm]
> und  [mm]\bruch{\partial}{\partial y}f(x,y,z)=0[/mm]
>  
>
> Ich entscheide mich somit z.B. für die Funktion
> [mm]f(x,y,z)=x^2[/mm]
>  

Ok, aber allgemeiner steht da, dass f nur von x abhängt (diffbar)

> [mm]\Rightarrow \pmat{cosy-cosy \\ 0-0 \\ 0-0}=\pmat{0 \\ 0 \\ 0}[/mm]
>  
>
> Das Potential [mm]\varphi[/mm] soll nun aus der Bedingung
> [mm]-\vec{F}=\nabla \varphi[/mm] berechnet werden

Warum wechselst Du hier von q auf F?

>  

....

>  
> und es ergibt sich somit das Potential
> [mm]\varphi(x,y,z)=-\bruch{1}{3}x^3-zsin(y)-ycos(z)+C_0[/mm]
>  
>
> Meine Frage besteht nun darin zu fragen, ob es prinzipiell
> reicht zu sagen, dass Jede Funktion f ein Potential
> besitzt,

Hier stimmt Dein Text nicht. Es geht um eine Funktion q, die unter bestimmten Bedingungen ein Potential besitzt.

> für die folgendes gilt: [mm]\bruch{\partial}{\partial z}f(x,y,z)=0[/mm]
> und  [mm]\bruch{\partial}{\partial y}f(x,y,z)=0,[/mm] denn für alle
> anderen Fälle wäre das Vektorfeld ja nicht Wirbelfrei.
>  
> Es geht somit z.B. auf für [mm]x^k[/mm] mit k [mm]\in \IR[/mm]

Das habe ich oben versucht, etwas anders zu formulieren. exp( x ) geht doch auch.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]