matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikPotential entwickeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "HochschulPhysik" - Potential entwickeln
Potential entwickeln < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential entwickeln: Orthonormale Funktionen
Status: (Frage) überfällig Status 
Datum: 18:30 Mo 24.11.2008
Autor: devilsdoormat

Aufgabe
Ein homogen geladener, kreisförmiger Draht mit verschwindend kleinem Querschnitt liegt konzentrisch zum Ursprung in der xy-Ebene. Der Kreis soll Radius R haben und die Gesamtladung Q tragen.

Geben Sie das elektrostatische Potential entlang der z-Achse an.

Hallo,

ich habe diese Frage noch in keinem anderen Forum gestellt.

Grundlegend kann man ja durch direkte Integration über diesen Draht das Potential recht einfach bestimmen. Dafür ergibt sich bei mir zunächst:

[mm] \phi \left( z \right) = \bruch{1}{4 \pi \epsilon _0} * \bruch{Q}{ \wurzel{R^2 + z^2}}[/mm]

Nun sollen wir diese Funktion allerdings noch mit Hilfe der Lösung der Laplacegleichung in Kugelkoordinaten entwickeln. Da hier Azimuthalsymmetrie vorliegt und wir außerdem zunächst entlang der z-Achse gucken ([mm] \theta = 0 [/mm]) vereinfacht sich dies zu:

[mm] \phi \left( z \right) = \summe_{l=0}^{\infty} \left( a_l * z^l + b_l * z^{-l-1} \right) [/mm]

Also sollen hier die [mm] a_l [/mm] und [mm] b_l [/mm] bestimmt werden. Da mit dem ersten Ausdruck für das Potential ein endliches Potential im Nullpunkt resultiert, folgt, dass [mm] b_l [/mm] = 0 gelten muss, da es dort sonst eine Singularität gäbe. also gilt es die [mm] a_l [/mm] mit Hilfe der Gleichung

[mm] \bruch{1}{4 \pi \epsilon _0} * \bruch{Q}{ \wurzel{R^2 + z^2}} = \summe_{l=0}^{\infty} a_l * z^l [/mm]

zu bestimmen. Und hier verließen sie mich. Ich habe zwar ein wenig was ausprobiert, um diese Reihe in eine Summe orthonormaler Funktionen umzuschreiben, aber das funktioniert letzten Endes bei mir nicht. Hat jemand einen guten Ansatz, wie ich das umsetzen kann? Oder habe ich vorher schon einen anderen Denkfehler gemacht?

Ich bin für jede Hilfe dankbar!

Grüße

        
Bezug
Potential entwickeln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Mi 26.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]