matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikPotential
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Potential
Potential < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 28.11.2012
Autor: lukas843

Aufgabe
Ein Hertzscher Dipol kann mit der Potentialfunktion:
[mm] $\prod=\frac{ql}{4\pi r}cos(kr-\omega [/mm] t)* [mm] \overrightarrow e_z$ [/mm]
Berechnen Sie das Magnetfeld:
[mm] $H=\frac{1}{\mu_0} [/mm] rotA$
wobei das Vektorpotential A durch:
[mm] $A=\mu_0 \frac{\partial \prod}{\partial t}$ [/mm]
gegeben ist.

A habe ich schon ausgerechnet das wäre doch dann:
[mm] $A=\frac{\omega ql}{4\pi r \mu_0}sin(kr-\omega [/mm] t)* [mm] \vektor{0\\0\\1}$ [/mm]
[mm] $r=\wurzel{x^2+y^2+z^2}$ [/mm]
Aber wie leite ich solche riesen Gleichung ab ? Wie kann ich das möglichst am Elegantesten lösen um das Magnetfeld zu berechnen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potential: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Mi 28.11.2012
Autor: Event_Horizon

Hallo!

Es ist leider normal, daß es bei vektoriellen Ableitungen schnell mal etwas aus dem Ruder läuft.

In diesem Fall ist es allerdings nicht ganz so tragisch, denn du hast nur eine Komponente in Z-Richung, und damit nur zwei Ableitungen.

Außerdem passiert hier etwas, das du auch häufiger vorfindest: Die Funktion hat für x und y die gleiche Struktur, das heißt, die Ableitungen nach x und y sehen gleich aus - bis darauf, daß x und y vertauscht werden müssen. Im Prinzip hast du daher nur eine Ableitung zu berechnen.

Bezug
                
Bezug
Potential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mi 28.11.2012
Autor: lukas843

Ok dann habe ich erstmal versucht A nach x zu differenzieren:
[mm] $\frac{\partial \frac{\omega ql}{4\pi r \mu_0}sin(kr-\omega t)}{\partial x} [/mm] = [mm] \frac{\mu_0*4\pi*\omega*q*l*k*x*cos(kr-\omega t)}{8 \pi^2r^2\mu_0^2}-\frac{4 \pi \omega q l sin(kr-\omega t)}{8 \pi^2 r^3 \mu_0^2}$ [/mm]

Kann mir das jemand bestätigen?

Bezug
                        
Bezug
Potential: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Do 29.11.2012
Autor: leduart

Hallo
1. zieh doch mal alle Konstanten zusammen und nenn sie a
so wird das mit deinen vielen Konstanten, mit denen du auch noch erweiterst zu unübersichtlich
dann musst du doch nur
[mm] a/r*sin(kr-\omega*t) [/mm] mit Produktregel nach r ableiten und mit dr/dx=x/r multiplizieren.
mir scheint dein Ergebnis falsch.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]