matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPositive Definitheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Positive Definitheit
Positive Definitheit < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positive Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Di 09.09.2014
Autor: Petrit

Aufgabe
[mm] T\in [/mm] L(V), T selbst-adjungiert, positiv definit.
Zu zeigen: [mm] T^{3} [/mm] auch positiv definit.


Hallo!
Ich hab mal wider ein Frage. Und zwar habe ich demnächst meine mündliche Modulprüfung in Lineare Algebra und komme bei dieser Aufgabe nicht weiter.

Wenn T positiv definit ist, gilt <Tv,v> >0 [mm] \forall v\inV [/mm] und [mm] v\not= [/mm] 0.
Daraus kann ich folgern, dass Tv ungleich 0 ist. [mm] =. [/mm] Skalarprodukt ist ja positiv definit, <Tv,Tv> [mm] \ge [/mm] 0, aber nur für <Tv,Tv> und nicht für [mm] . [/mm] Und jetzt komme ich nicht weiter.

Ich wäre für ein paar Tipps/Hinweise äußerst dankbar.

Viele Grüße und schonmal vielen Dank im Voraus, Petrit!

        
Bezug
Positive Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Di 09.09.2014
Autor: Richie1401

Hi,

> [mm]T\in[/mm] L(V), T selbst-adjungiert, positiv definit.
>  Zu zeigen: [mm]T^{3}[/mm] auch positiv definit.
>  Hallo!
>  Ich hab mal wider ein Frage. Und zwar habe ich demnächst
> meine mündliche Modulprüfung in Lineare Algebra und komme
> bei dieser Aufgabe nicht weiter.
>  
> Wenn T positiv definit ist, gilt <Tv,v> >0 [mm]\forall v\inV[/mm]
> und [mm]v\not=[/mm] 0.
>  Daraus kann ich folgern, dass Tv ungleich 0 ist.
> [mm]=.[/mm] Skalarprodukt ist ja positiv
> definit, <Tv,Tv> [mm]\ge[/mm] 0, aber nur für <Tv,Tv> und nicht
> für [mm].[/mm] Und jetzt komme ich nicht weiter.

Setze w:=Tv.
Da [mm] T\in{}L(V) [/mm] landest du wieder im VR V. Dann ist <Tw,w> positiv, da T positiver Operator.

>  
> Ich wäre für ein paar Tipps/Hinweise äußerst dankbar.
>  
> Viele Grüße und schonmal vielen Dank im Voraus, Petrit!


Bezug
                
Bezug
Positive Definitheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Di 09.09.2014
Autor: Petrit

Ah, ja na klar. Da bin ich einfach nicht draufgekommen.
Vielen Dank, so funktioniert das natürlich.

Vielen Dank!

Petrit!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]