matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikPortfolio-Optimierung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Finanzmathematik" - Portfolio-Optimierung
Portfolio-Optimierung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Portfolio-Optimierung: Optimierung
Status: (Frage) überfällig Status 
Datum: 15:31 Mi 27.04.2022
Autor: Josef

Du hast aktuell 100.000 € in eine Firma ABC investiert. Diese Aktie hat eine erwartete Rendite von 12 % und eine Volatilität (Standardabweichung?) von 40 %. Nimm an, dass die risikolose Rate 5 % ist. Das Marktportfolio (nach dem CAPM) hat eine erwartete Rendite von 10 % und eine Volatilität von 18 %. Bei einem Portfolio, dass die kleinste Volatilität, aber immer noch die gleiche Rendite wie das ursprüngliche Investment in ABC hat, wie viel muss man in den Market investieren?

Lösung: 140.000

Wie lautet der Rechenweg?


Viele Grüße
Josef

        
Bezug
Portfolio-Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Mi 27.04.2022
Autor: ChopSuey

Hallo Josef,

ich vermute, es handelt sich um eine freiwillige Übungsaufgabe? Ich habe sie jedenfalls mal als solche deklariert.



Bezug
                
Bezug
Portfolio-Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:55 Do 28.04.2022
Autor: Gonozal_IX

Hiho,

> ich vermute, es handelt sich um eine freiwillige Übungsaufgabe? Ich habe sie jedenfalls mal als solche deklariert.

denke ich nicht.
Scheint eine "normale" Finanzwirtschaft-ÜA zu sein… aber ohne Anschreiben des Fragestellers kann ich auch nur rätseln.

Gruß,
Gono

Bezug
        
Bezug
Portfolio-Optimierung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:20 Di 02.08.2022
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Portfolio-Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Di 02.08.2022
Autor: Josef

Um die höchste Rendite zu erhalten, muss man den Altbestand-Aktienteil um mindestens 40 % erhöhen.

A: erwartete Rendite = 12 % abzüglich risikolose Rate 5 % verbleiben mindestens 7 %
B: erwartete Rendite = 10 % abzüglich risikolose Rate 5 % verbleiben mindestens 5 %

Bei einer Mindest-Volatilität von 18  %.


100.000*0.40 =  40.000 neu
+ Altbestand = 100.000
Neubestand   = 140.000


Viele Grüße
Josef

Bezug
                        
Bezug
Portfolio-Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:10 Di 02.08.2022
Autor: Staffan

Hallo,

ist das wirklich die Lösung?
Ich habe die Aufgabe so verstanden, daß man darlegen soll, aus welchem Grund eine Erhöhung der Anlage um genau 40% notwendig ist, um die niedrigere Volatilität zu erhalten.

Mein Gedanke dazu war, die Renditen und die Volatilität der beiden Papiere zu addieren und das  Ergebnis dann zu halbieren, weil man nur ein Portfolio hat, also

(0.12 + 0.40 + 0.1 + 0.18)/2=0.4

Das ist immerhin der Teil, um den der Aktienbestand nach der Aufgabe zu erhöhen ist.
Und hier sind Chancen und Risiken beider Aktien entsprechend berücksichtigt.
Ob das aber der richtige Weg ist, kann ich nicht genau begründen.

Gruß
Staffan

Bezug
                                
Bezug
Portfolio-Optimierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:50 Mi 03.08.2022
Autor: Josef

Vielen Dank, Staffan, für Deinen Beitrag!

Theoretisch minimiert wird die Varianz sicher für Q12 = -1 und für diesen Wert hat die Varianzfunktion die Form:

EV(x) = [mm] 0,4x^2 [/mm] + [mm] 0,18(1-x)^2 [/mm] + 2*0,632*0,424*(-1)*x(1-x)

[mm] 1,1159v^2 [/mm] - 0,8959x + 0,18

2,9318x - 0,8959

x = 0,4014...


Deine Darstellung scheint wohl richtig zu sein.

Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]