matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikPolynomring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Polynomring
Polynomring < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:53 Fr 23.04.2010
Autor: Freak84

Aufgabe
Sei K ein Körper.
Zeigen sie, durch vollständige Induktion nach grad(g) , dass zu gegebenen g,h [mm] \in [/mm] K[x] \ {0}  Polynome r,s [mm] \in [/mm] K[x] existieren , so dass g=s*h+r und grad(r)<grad(h)

Hallo Leute,
ich habe schon immer schwierigkeiten mit Induktionen und finde hier nicht so recht den richtigen Ansatz.
Muss ich nun mit grad(g) = 0 oder mit grad(g) = 1 anfangen.

Bei grad(g) = 0 würde ich dann sagen, dass grad(h) auch 0 sein muss und somit beides konstante Fkt. und da K ein Körper ist existiert ein s mit g=s*h und r ist somit gleich 0.

Für grad(g) = 1 würde ich sagen, dass uns die Polynomdivision mit rest ja genau unser s und r liefert.

Wie ich nun aber auch den schritt von n nach n+1 machen soll ich mir noch etwas rätselhaft.

Danke schonmal für eure Hilfe

        
Bezug
Polynomring: Hilfestellung
Status: (Antwort) fertig Status 
Datum: 22:00 Fr 23.04.2010
Autor: Ultio

Hallo,
Also wie ist der Grad einer Funktion definiert?

ja genau:
Sei [mm] \IK [/mm] ein Körper und sei p ein Polynom aus [mm] \IK [/mm] [x] mit [mm] p=a_n x^n [/mm] + [mm] a_{n-1} x^{n-1} [/mm] + ... + [mm] a_1 [/mm] x + [mm] a_0 [/mm] und [mm] a_n \not= [/mm] 0, dann heißt n der Grad des Polynoms oder kurz grad(p) = deg(p) = n. Das Nullpolynom hat den Grad - [mm] \infty [/mm] und die konstanten Polynome haben den Grad 0.

es gibt so etwas das nennt sich Gradformel:
dabei gilt für Polynome aus [mm] \IK [/mm] [x]
deg(p*q) = deg(p) + deg(q)
und deg(p+q) = max{(deg(p), deg(q))}

Mach dir anhand dessen deutlich das deg p = - [mm] \infty [/mm] wenn p=0! Nur dann macht das Rechnen mit der Gradformel Sinn.

Division mit Rest in  [mm] \IK [/mm] [x]  beschreibt man also folgendermaßen, bzw. deine Aufgabe bzw. Behauptung:

Seien p,q [mm] \in \IK [/mm] [x] , dann existieren [mm] \underline{eindeutig} \underline{bestimmte} [/mm] Polynome t,r [mm] \in \IK [/mm] [x] mit p = t q + r
wobei deg r < deg q und q [mm] \not= [/mm] 0.

Also was ist zu zeigen?

genau:
erst die Existenz von t,r die du mittels meiner Hilfe beweist
dann kommen wir zum Beweis der Eindeutigkeit und dann ist die Aufgabe fertig.

Zum Beweis der Existenz:
versuche eine Induktion über den Grad von p,
Den Induktionsanfang gebe ich dir vor den Induktionsschritt musst du dann selbst vollziehen.

dafür überlege was passiert wenn,
(IA)                 deg p = 0 --> deg q > 0  
                        dann gilt doch  p = 0 * q + p   wobei t = 0 und r=q richtig?
                        aber welcher Fall kann noch einterten? deg q auch gleich 0, dann gilt aber p = k * q + o wobei dann schon folgt k=t und 0 = r

Nun kommen im Induktionsschritt von (n-1) nach (n) zwei Fälle zum Tragen
                       1. deg p < deg q --> p
                  es gilt offensichtlich p = 0 * q + p   wobei t = 0 und r= p wie  
                  oben im Induktionsanfang gezeigt.
                       2. deg p [mm] \ge [/mm] deg q

den zweiten Falle betrachtest {du} jetzt.
Betrachtung erfolgt mit:
[mm] p=a_n x^n [/mm] + [mm] a_{n-1} x^{n-1} [/mm] + ... + [mm] a_1 [/mm] x + [mm] a_0 [/mm]
[mm] q=b_m x^m [/mm] + [mm] b_{m-1} x^{m-1} [/mm] + ... + [mm] b_1 [/mm] x + [mm] b_0 [/mm]

(Kommentar:
Das war vielleicht wage
was passiert mit [mm] a_N x^n [/mm] wenn du es duch [mm] b_m x^m [/mm] teilst?Und was ist das denn genau?
Kommentar Ende)


Zum Beweis der Eindeutigkeit:
nehmen wir mal an p=t*q + r
und p = k * q + s
was gilt für den deg (r) und deg(s)?
(k-t)q = r-s und jetzt werkeln vielleicht sogar mit deg ;-)?


Also, bin erst Sonntag wieder online um zu kontrollieren, aber bis dahin haben sich bestimmt schon andere Gefunden, die deine Frage beantworten.

Viel Erfolg!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]