matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPolynomring
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Polynomring
Polynomring < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomring: Beweis
Status: (Frage) beantwortet Status 
Datum: 20:06 Mo 23.06.2008
Autor: pida_

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


hi leute,
also ich schreib euch mal erstmal den Satz auf den ich gerne verstehen möchte:

Sei [mm] m=degM_f [/mm] und [mm] M_f [/mm] das Minimalpolynom von [mm] f\in [/mm] End(V). Dann bilden die Endomorphismen (id, f, __, [mm] f^{m-1}) [/mm] eine Basis von K[f] als K-Vektorraum.

So also das was ich bisher verstanden habe ist, ist dass diese oben genannten Endomorphismen lin. unabh. sind das leuchtet mir ein. Aber was ich nicht verstehe ist warum das ein Erzeugendensystem ist. Ich hab hier eine Gleichund die das zeigt aber ich sehe das nicht in dieser Gleichung. Also diese Gleichung ist folgene:
es gilt k>m
[mm] f^{k}=-b_0*f^{k-m}+b_1*f^{k-m+1}+ [/mm] __ [mm] +b_(m-1)*f^{k-1} [/mm]
ich weiß halt nicht wie man auf diese Gleichung kommt. Wenn ich das weiß dann verstehe ich glaube ich auch warum die oben genannten Endomorphismen eine Basis ist zu K[f].
Es wäre echt sehr nett wenn mir jemand weiter helfen kann.
lg
pida

        
Bezug
Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Di 24.06.2008
Autor: Kyle

Hallo,

durch das Minimalpolynom erhältst Du eine nichttriviale Linearkombination der Null aus den Potenzen [mm] f^0,...,f^m [/mm] mit Koeffizienten in K. Für k>m kannst Du nun auf beiden Seiten die Funktion f jeweils k-m mal anwenden, mithilfe der Linearität auseinanderziehen und anschließend den Summanden mit der höchsten Potenz auf die andere Seite bringen.

Liebe Grüße,
Kyle

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]