matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenPolynomfunktionen auflösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Polynomfunktionen auflösen
Polynomfunktionen auflösen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomfunktionen auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 Di 27.01.2009
Autor: Phil92

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich sitze schon 2 Stunden an einer Polynomfunktion und versuche diese korrekt aufzulösen. Meine Gleichung:
[mm] 3x^3-4x [/mm]
Wenn ich diese Funktion 2 Stellen nach oben UND 5 Stellen nach LINKS verschieben will, dann heißt sie ja:
[mm] 3(x+5)^3 [/mm] - 4(x+5) +2
So. Da wir aber beweisen müssen, dass diese Funktion auch Punktsymmetrisch ist, bin ich bis zu diesem Schritt gekommen:
f(x+d)+a = -f((-x)-d)-a
Mit Zahlen:
[mm] -[3((-x)-5)^3 [/mm] - 4((-x)-5) -2]
Nun weiß ich nicht, ob ich die Funktion auch ordnungsgemäß aufgelöst habe. Mein 1. Schritt:
[mm] -[-3(x-5)^3 [/mm] +4(x-5) -2]
Dann mein 3. Schritt:
[mm] 3(x+5)^3 [/mm] -4(x+5) +2

Habe ich vom 2. zum 3. Schritt richtig gerechnet? (Ich glaube, ich habe gegen etliche Matheregeln verstoßen, um mein gewünschtes Ergebnis zu bekommen^^)


        
Bezug
Polynomfunktionen auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Di 27.01.2009
Autor: Steffi21

Hallo, für die Punktsymmetrie einer Funktion gilt

f(a+x)-b=-f(a-x)+b

deine Funktion ist korrekt

[mm] f(x)=3(x+5)^{3}-4(x+5)+2 [/mm]

[mm] f(x)=3(x+5)^{3}-4x-18 [/mm]

durch die Verschiebung ist die Funktion punktsymmetisch zum Punkt (-5;2) du kennst also a=-5 und b=2, jetzt einsetzen

auf der linken Seite setzt du für x jetzt -5+x ein

auf der rechten Seite setzt du für x jetzt -5-x ein

3(-5+x [mm] +5)^{3}-4( [/mm] -5+x )-18-2=-[3(-5-x [mm] +5)^{3}-4( [/mm] -5-x )-18]+2

[mm] 3x^{3}+20-4x-20=-[-3x^{3}+20+4x-18]+2 [/mm]

.
.
.

Steffi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]