matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisPolynomfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Polynomfunktion
Polynomfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomfunktion: Frage
Status: (Frage) beantwortet Status 
Datum: 15:55 Sa 07.05.2005
Autor: gIlioner

Hallo,

ich weiß leider gar nicht, wie ich an folgende Aufgabe rangehen soll. Alle meine Schritte führen ins Leere. :(

Hier erstmal die Aufgabe:

Es sei [mm] f:\mathbb{C}\rightarrow\mathbb{C}, z\mapsto \sum\limits_{i=0}^na_iz^i [/mm] eine Polynomfunktion mit [mm] a_n\neq0 [/mm] und [mm] n\neq0. [/mm]

a) Es sei [mm] z_0\in\mathbb{C} [/mm] beliebig. Zeigen Sie, dass es [mm] c_1\in\mathbb{C}\setminus\{0\}, 0 f(z) = [mm] f(z_0)+c_1(z-z_0)^p+(z-z_0)^{p+1}\cdot [/mm] p(z).

Naja, wie schon gesagt, mir fällt kein Ansatz ein.

Wäre nett, wenn mir jemand die grundlegenden Beweisschritte und evtl. auch Sätze angeben könnte, die für die Lösung von Bedeutung wären.

Vielen Dank :)


Freundliche Grüße
Sebastian


Ich habe diese Frage in keinen anderen Internetforum gestellt

        
Bezug
Polynomfunktion: Hinweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 So 08.05.2005
Autor: Highlander

Schau mal hier!

[]Link zu Matheplanet.at

Dort findest du gute Hinweise.

Bezug
        
Bezug
Polynomfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Mo 09.05.2005
Autor: Julius

Hallo!

Du musst einfach nur die Polynomfunktion $f$ in ihre Taylorreihe um [mm] $z_0$ [/mm] entwickeln und beachten, dass [mm] $f^{(i)} \equiv [/mm] 0$ für $i >n$.

Dann bist du doch schon fertig. [haee] [kopfkratz3]

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]