matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPolynome abbilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Polynome abbilden
Polynome abbilden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome abbilden: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:56 Mi 04.04.2012
Autor: Chrism91

Aufgabe
Gegeben sei die Abbildung f: [mm] Polynomraum_{2} \to Polynomraum_{2}, f(p)(z)=p(2)z^{2}+p(1)z [/mm] und [mm] \delta=(1,x,x^2) [/mm] der Standardbasis  des Polynomraums [mm] Polynomraum_{2} [/mm]
1) Berechnen Sie die Abbildungsmatrix von f bzgl. der Standardbasis [mm] \delta. [/mm]
2) Bestimmen sie alle Polynome p  [mm] \in Polynomraum_2, [/mm] die durch f auf das Nullpolynom abgebildet werden.

Als erstes habe ich die Loesungen fuer die einzelnen Basen ausgerchnet.
[mm] f(1)=z^{2}+z [/mm]
[mm] f(z)=2z^{2}+z [/mm]
[mm] f(z)=4z^{2}+z [/mm]

[mm] \pmat{ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 } [/mm]

Hier habe ich allerdings meine Verstaendnisprobleme. Wenn ich jetzt A(L,O) loesen will fuer 2), muesste das meiner Meinung nach wie folgt aussehen:

[mm] \pmat{ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 } \pmat{ 1 \\ x \\ x^{2} }=\pmat{ 0 \\ 0 \\ 0 } [/mm]

So wie ich die Matrix aufgestellt habe, stehen die Spalten fuer die die jeweilge Potenz des Polynoms.
Durch die Matrixpolynom stehen aber die Zeilen fuer die Potenzen.
Deswegen wuerde ich  die Matrix grundsaetzlich so aufstellen:

[mm] \pmat{ 1 & 1 & 0 \\ 2 & 1 & 0 \\ 4 & 1 & 0 } [/mm]

Ich kenne mich mit Polynomrauemen nur schlecht aus, auch mit Polynomen selbst habe ich noch nicht viel gearbeitet. Wenn bei Fehlern noch kurze Erklaerungen dazukommen, bin ich sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruesse,
chrism91

        
Bezug
Polynome abbilden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Mi 04.04.2012
Autor: fred97


> Gegeben sei die Abbildung f: [mm]Polynomraum_{2} \to Polynomraum_{2}, f(p)(z)=p(2)z^{2}+p(1)z[/mm]
> und [mm]\delta=(1,x,x^2)[/mm] der Standardbasis  des Polynomraums
> [mm]Polynomraum_{2}[/mm]
>  1) Berechnen Sie die Abbildungsmatrix von f bzgl. der
> Standardbasis [mm]\delta.[/mm]
>  2) Bestimmen sie alle Polynome p  [mm]\in Polynomraum_2,[/mm] die
> durch f auf das Nullpolynom abgebildet werden.
>  Als erstes habe ich die Loesungen fuer die einzelnen Basen
> ausgerchnet.
>  [mm]f(1)=z^{2}+z[/mm]
>  [mm]f(z)=2z^{2}+z[/mm]
>  [mm]f(z)=4z^{2}+z[/mm]
>  
> [mm]\pmat{ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 }[/mm]

Das stimmt.


>  
> Hier habe ich allerdings meine Verstaendnisprobleme. Wenn
> ich jetzt A(L,O) loesen will fuer 2), muesste das meiner
> Meinung nach wie folgt aussehen:
>  
> [mm]\pmat{ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 } \pmat{ 1 \\ x \\ x^{2} }=\pmat{ 0 \\ 0 \\ 0 }[/mm]

Nein !

Sei [mm] p(z)=az^2+bz+c. [/mm] Dann:

         f(p)=0  [mm] \gdw p(2)z^2+p(1)z= [/mm] 0  für alle z  [mm] \gdw [/mm]  p(2)=0=p(1)  [mm] \gdw [/mm]  a+b+c=0 und 4a+2b+c=0


FRED

>  
> So wie ich die Matrix aufgestellt habe, stehen die Spalten
> fuer die die jeweilge Potenz des Polynoms.
>  Durch die Matrixpolynom stehen aber die Zeilen fuer die
> Potenzen.
>  Deswegen wuerde ich  die Matrix grundsaetzlich so
> aufstellen:
>  
> [mm]\pmat{ 1 & 1 & 0 \\ 2 & 1 & 0 \\ 4 & 1 & 0 }[/mm]
>  
> Ich kenne mich mit Polynomrauemen nur schlecht aus, auch
> mit Polynomen selbst habe ich noch nicht viel gearbeitet.
> Wenn bei Fehlern noch kurze Erklaerungen dazukommen, bin
> ich sehr dankbar.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Gruesse,
>  chrism91


Bezug
                
Bezug
Polynome abbilden: Rueckfrage
Status: (Frage) überfällig Status 
Datum: 15:18 Mi 04.04.2012
Autor: Chrism91

Den Loesungsweg habe ich verstanden. Mir ist aufgefallen das die Ergebnisse auch in der Polynomabbildung enthalten ist.

[mm] \pmat{ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 } [/mm]

Die einzelnen Spalten stehen fuer die Standardbasen [mm] (1,x,x^{2}), [/mm] die erste Zeile ist Null da es kein Polynom mit p(n) , n [mm] \in \IR [/mm] gibt, die zweite Zeile repraesentiert das Polynom p(1)z, die letzte Zeile das Polynom [mm] p(2)z^{2}. [/mm]
Sind diese Gegebenheiten gruendsaetzlich in der Abbildung enthalten?
Damit koennte ich dann auch die Nullpolynome aus der Abbildung ablesen.

chrism91

Bezug
                        
Bezug
Polynome abbilden: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 06.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]