matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenPolynomdivision
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Polynomdivision
Polynomdivision < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage eines Dummen
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 14.03.2005
Autor: HistoMat

Hallo liebe Freunde der Mathematik,

ich hab das mal richtig gekonnt, aber irgendwie ist das wie aus dem Hirn gelöscht. Kann mir evtl. jmd. sagen, wie ich eine korrekte Polynomdivision am Beispiel

f(x) = x³-2x²+1  :  x²-1

ausrechne?!

Dankeschön im Vorfeld,

M.K aus B.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 18:43 Mo 14.03.2005
Autor: Zwerglein

Hi, HistoMat,

erst mal (und das ist wegen der Regel "Punkt vor Strich" wichtig!):
Vergiss die Klammern nicht:

  (x³ - 2x²      + 1)  : ( x²-1)  = x - 2  + [mm] \bruch{x-1}{x^{2}-1} [/mm]
[mm] -(x^{3} [/mm]        - x)
---------------
        [mm] -2x^{2}+x+1 [/mm]
      [mm] -(-2x^{2} [/mm]    +2)
        -------------
             x - 1


Bezug
                
Bezug
Polynomdivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Mo 14.03.2005
Autor: HistoMat

Hey, vielen, vielen Dank!
Das ging nicht nur fix, hier sind wenigstens Leute die was davon verstehen. Vor morgen hätte ich garnit mit einer Antwort gerechnet.

Hab ich schon erwähnt, dass ich mich im Abitur in Mathe prüfen lasse? ;-)


mfg.,
Martin aka. Histomat

Bezug
                        
Bezug
Polynomdivision: ANTWORT
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Mo 14.03.2005
Autor: emma

HEy,
ich hoffe dass du die Lösung lesen kannst, weil der Formelditor bei mir irgendwie nicht funktioniert.


Deine Aufgabe ist:

x³-2x²+1  :  x²-1 = [mm] x^2-x+1 [/mm]
[mm] -x^2 [/mm]
----
[mm] -x^2 [/mm] +2

[mm] -(-x^2 [/mm]



Bin mir bei der Lösung aber nicht sicher!!!!!

Bezug
                
Bezug
Polynomdivision: weitere Umformung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:31 Di 15.03.2005
Autor: Loddar

Guten Morgen HistoMat!


Das Ergebnis von Zwerglein habe ich auch erhalten:

[mm] $(x^3 [/mm] - [mm] 2x^2 [/mm] + 1) : [mm] (x^2-1) [/mm] \ = x - 2  + [mm] \bruch{x-1}{x^{2}-1}$ [/mm]


Zur weiteren Vereinfachung kannst Du noch den Bruch umformen
(3. binomische Formel im Nenner:)

$... \ = \ x - 2  + [mm] \bruch{x-1}{(x-1)*(x+1)} [/mm] \ = \ x - 2  + [mm] \bruch{1}{x+1}$ [/mm]


Gruß
Loddar


Bezug
        
Bezug
Polynomdivision: MatheBank
Status: (Antwort) fertig Status 
Datum: 18:55 Mo 14.03.2005
Autor: Loddar

Hallo HistoMat,

auch Dir [willkommenmr] !!

Sieh' doch auch mal in unserer MatheBank unter MBPolynomdivision ...


Grüße
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]