matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesPolynomdivision
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Polynomdivision
Polynomdivision < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage bzgl. Ergebnis
Status: (Frage) beantwortet Status 
Datum: 12:33 Fr 23.03.2007
Autor: dollface

Aufgabe
Gegeben ist die Funktion:
f (x) = [mm] 0,5x^3 [/mm] + [mm] 0,5x^2 [/mm] - 2,5x + 1,5

a) Berechnen Sie die Nullstellen

zu a) Nullstellen f ( x) = 0

0 = [mm] 0,5x^3 [/mm] + [mm] 0,5x^2 [/mm] - 2,5x + 1,5   |: (0,5)
0 = [mm] x^3 [/mm] + [mm] x^2 [/mm] - 5x + 3

Suchen von Nullstellen: (Teiler von 3: {-3;-1;1;3}
f(1) = [mm] (1)^3 [/mm] + [mm] (1)^2 [/mm] - 5 * (1) + 3
f(1) = 0

Demnach ist 1 eine Nullstelle

Polynom bilden ( x - 1 )

Polynomdivision:
( [mm] x^3 [/mm] - [mm] x^2 [/mm] - 5x + 3 ) : ( x - 1 ) = [mm] x^2 [/mm] + 2x - 3

da ich kein Mathefreak bin versteh ich auch nicht, wie er auf das Ergebnis bei der Polynomdivion kommt. den Weg bis zum Polynom versteh ich, aber danach nix mehr.
auf die [mm] x^2 [/mm] komm ich grad noch selber *g* aber bei  + 2x setzt es völlig aus.
kann mir da vllt. jemand weiterhelfen?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 Fr 23.03.2007
Autor: Ankh

So fängt es an: (Achtung: +x², nicht Minus!)
x³ + x² - 5x + 3 ) : ( x - 1 ) = x²...  (denn x³:x=x²)
dann rechnen wir:
-(x³-x²)                 , denn (x-1)*x² = (x³-x²)
und erhalten:
    2x²                  , denn x²-(-x²)=2x²
und ziehen -5x runter:
    2x²-5x

dann weiter in der ersten Zeile:
x³ - x² - 5x + 3 ) : ( x - 1 ) = x² + 2x...   (denn 2x²:x=2x)
dann wieder:
  -(2x² - 2x)            , denn (x-1)*2x = 2x²-2x
und es bleibt übrig:
         -3x + 3

dann weiter in der ersten Zeile:
x³ - x² - 5x + 3 ) : ( x - 1 ) = x² + 2x - 3, denn -3x:x=-3
dann wieder:
       -(-3x + 3)           , denn (x-1)*(-3) = -3x+3
und es bleibt übrig:
               0
Das heißt, wir sind fertig.
Insgesamt sieht das Ganze dann so aus:
x³ - x² - 5x + 3 ) : ( x - 1 ) = x² + 2x - 3
-(x³-x²)
---------
     2x² - 5x
   -(2x² - 2x)
    -----------
         -3x + 3
       -(-3x + 3)
        ----------
               0

Bezug
                
Bezug
Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Fr 23.03.2007
Autor: dollface

Hallo :) vielen vielen Dank für deine schnelle Antwort :)
Hab jetzt aber ne Frage.. und zwar hast du folgendes geschrieben:

"x²-(-x²)=2x²"

das ist ja genau das was mich sutzig macht. es leuchtet mir nicht ein, warum [mm] x^2-(-x^2)=2x^2 [/mm] sein soll.
löst man dann die Klammer quasi auf, so dass aus - und - + wird und addiert die Anzahl der vorhandenen x's einfach? nur warum addiert man die Hochzahlen dann nicht auch?

Bezug
                        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Fr 23.03.2007
Autor: Ankh


> das ist ja genau das was mich sutzig macht. es leuchtet mir
> nicht ein, warum [mm]x^2-(-x^2)=2x^2[/mm] sein soll.
>  löst man dann die Klammer quasi auf, so dass aus - und - +
> wird und addiert die Anzahl der vorhandenen x's einfach?

Ganz genau. -(-x²) = x²
Und: x² + x² = 2x²
Genau wie: adsfjhsdkjfhgf + adsfjhsdkjfhgf = 2adsfjhsdkjfhgf

> nur warum addiert man die Hochzahlen dann nicht auch?

weil $x²*x² = [mm] x^{(2+2)}= x^4 [/mm] = x*x*x*x$
aber $x²+x² = x*x + x*x = 2x*x = 2x²$

Bezug
                                
Bezug
Polynomdivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Fr 23.03.2007
Autor: dollface

Das asdfghjkk Beispiel hats getroffen *g* dankeschön nochmal :) Habs jetzt verstanden - hoffentlich erinner ich mich daran wenn ich es in der Vorklausur erneut vor mir haben sollte.

Danke :) und schönen Tag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]