matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisPolynomdivision
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Polynomdivision
Polynomdivision < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Divisionsaufgaben
Status: (Frage) beantwortet Status 
Datum: 13:16 Mo 28.11.2005
Autor: Mona

Hallo :)

ich habe ein Problem bei meinen Hausaufgaben und zwar bin ich mir nicht sicher, ob ich die Aufgaben richtig löse....

1) schon ausgerechnet und wollte wissen ob ich richtig liege:

(x³-6x²+11x-6) : (x-1) = x²-x+6
(x³-1x²)
_______
     -6x²+11x
   -(-6x²-  1x)
   __________
             -12x-6
          -(-12x+6)
          _________
                      0

2)

(5x³+10x²-5x-10) : (x+2) = 2,5x²-7x......
(5x³+ 4x²)
_________
          14x²-5x
          ..........

so hier ist dann auch shcon Schluss, weil ich da nicht mehr weiterkomme... Mich verwirrt dieses (x+ [mm] \underline{2}) [/mm]
Vielleicht kann mir da ja jemand weiterhelfen.

3) und dann habe ich noch eine 3. Aufgabe:

( [mm] x^{5}+ 11^{4}+41x³+61x²+30x) [/mm] : (x+5)

Funktioniert die dann nach dem selben Muster wie die vorigen Aufgaben auch?


Lg Mona

        
Bezug
Polynomdivision: Korrekturen
Status: (Antwort) fertig Status 
Datum: 13:46 Mo 28.11.2005
Autor: Roadrunner

Hallo Mona!


> (x³-6x²+11x-6) : (x-1) = x²-x+6
>  (x³-1x²)
>  _______
>       -6x²+11x

[notok] Du musst hier rechnen: [mm] $\left(x^3-6x^2\right) [/mm] - [mm] \left(x^3-1x^2\right) [/mm] \ = \ [mm] x^3-6x^2-x^3 [/mm] \ [mm] \red{+} [/mm] \ [mm] 1x^2 [/mm] \ = \ [mm] -\red{5}x^2$ [/mm]





> (5x³+10x²-5x-10) : (x+2) = 2,5x²-7x......
>  (5x³+ 4x²)

[notok] Wie oft passt denn das $x_$ in die [mm] $5x^3$ [/mm] rein?
Genau: [mm] $5x^2$ [/mm] , weil [mm] $x*5x^2 [/mm] \ = \ [mm] 5x^3$ [/mm] .

Und in der Zeile darunter rechnen wir "rückwärts":

$(x+2) * [mm] 5x^2 [/mm] \ = \ [mm] 5x^3 [/mm] + [mm] 10x^2$ [/mm]


Also wird dann:

  (5x³+10x²-5x-10) : (x+2) = 5x²...
- (5x³+10x²)
----------------
         0  - 5x

Kommst Du nun alleine weiter?






> ( [mm]x^{5}+ 11x^{4}+41x³+61x²+30x)[/mm] : (x+5)
>  
> Funktioniert die dann nach dem selben Muster wie die
> vorigen Aufgaben auch?

Ganz genau! Wenn Du dann noch die obigen Tipps / Korrekturen berücksichtigst ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Polynomdivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:25 Mo 28.11.2005
Autor: Mona

ok, danke ich werds vesuchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]