matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPolynomdarstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Polynomdarstellung
Polynomdarstellung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 09.05.2018
Autor: Maxi1995

Hallo,
ich habe Fragen zu einem Beweis einer Darstellungsform des charakteristischen Polynoms. []Dort (S.96) Dort wird schlicht die Determinante berechnet, über die das charakteristische Polynom definiert ist.
1. Jetzt fehlt aber in dieser Darstellung meiner Ansicht nach im ersten zum zweiten Schritt ein Term vom Grad n-1. Oder tritt der nicht auf, weil er unter den Permutationen in der Leibniz – Formel nicht getroffen wird?
2. Am Ende des Beweises von Satz 7.14 wird für den Koeffizient $ a _0$ die Darstellung ermittelt, was mich zu der Frage bringt, warum dieser Koeffizient mit dem in [mm] $\chi [/mm] _ A (X) $ übereinstimmen soll?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynomdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mi 09.05.2018
Autor: leduart

Hallo
ich weiss nicht genau was du vom 1. zum 2 ten Schritt meinst aber überall kommt ja x^(n-1) vor?
hall0 wenn du das Polynom [mm] \Chi_A(x) [/mm] hinschreibst, und dann x =0 einsetzt kommt doch das einzige Glied, das kein x als Faktor hat raus, also [mm] a_0 [/mm]
gruß leduart

Bezug
                
Bezug
Polynomdarstellung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Mi 09.05.2018
Autor: Maxi1995

Hallo Leduart,
danke für deine Antwort.
Ich wollte folgende Formulierung zu den Beweisschritten zu meiner Frage ergänzen:
[mm] $\det({\it X*E_n}-{\it A}) [/mm] =
[mm] \underline{(X-a_{11})\cdots(X-a_{nn})+ \text{Terme vom grad} \leq n-2} [/mm] =
[mm] X^{n}-\displaystyle \sum_{i=1}^{n}a_{ii}X^{n-1}+ \text{ Terme vom grad} \leq [/mm] n-2 =
[mm] X^{n} [/mm] - Spur (A) [mm] X^{n-1}+ \text{Terme vom grad} \leq [/mm] n-2 .
Schreiben wir [mm] $\chi_{A}(X)=X^{n}-\mathrm{S}\mathrm{p}\mathrm{u}\mathrm{r}(A)X^{n-1}+a_{n-2}X^{n-2}+ \cdots +a_{1}X+a_{0}$, [/mm] so ist $ [mm] a_{0}=\chi_{A}(0)=\det(0E_{n}-A)=\det(-A)=(-1)^{n}\det(\it [/mm] A)$.
Ich habe es oben noch einmal kurz angefügt und den Teil mit meiner Frage unterstrichen. Ich sehe wohl, dass da [mm] $X^{n-1}$ [/mm] vorkommt, frage mich aber, was mit Permutationen mit (n-1) Fixpunkten ist, die bringen mir doch auch noch [mm] $X^{n-1}$ [/mm] oder? Sind die schon abgedeckt, weil [mm] $(X-a_{11})\cdots(X-a_{nn})$ [/mm] ist in meinen Augen gerade [mm] $sgn(E_n)b_{11} \cdots b_{nn}$ [/mm] (wobei [mm] $b_{ii}$ [/mm] gerade die Diagonaleinträge von [mm] ${\it X*E_n}-{\it A} [/mm] $ sind). Da sollten doch noch mehr auftauchen oder täusche ich mich, wenn ja wieso?
Danke für den Hinweis, da war ich zu verbohrt.


Bezug
                        
Bezug
Polynomdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:55 Sa 19.05.2018
Autor: Maxi1995

Hallo,
kann mir vielleicht jemand meine als überfällig gekennzeichnete Frage beantworten, denn ich sehe wirklich nicht, was mit den Permutationen mit n-1 Fixpunkten passiert.

Bezug
                        
Bezug
Polynomdarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:03 Mo 21.05.2018
Autor: meili

Hallo Maxi1995,

> Hallo,
>  kann mir vielleicht jemand meine als überfällig
> gekennzeichnete Frage beantworten, denn ich sehe wirklich
> nicht, was mit den Permutationen mit n-1 Fixpunkten
> passiert.

Wenn man von einer Menge mit n Elementen ausgeht, gibt es keine
Permutation mit n-1 Fixpunkten.

Wenn du schon n-1 Elemente aufgeschrieben hast (jedes an seinem
Fixpunkt), bleibt für das n-te Element nur noch eine Möglichkeit übrig.
Und da alle anderen an ihrem Fixpunkt sind, bleibt für das letzte nur
sein Fixpunkt übrig.

Gruß
meili

Bezug
                                
Bezug
Polynomdarstellung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Mo 21.05.2018
Autor: Maxi1995

Vielen Dank, das habe ich nicht gesehen. Manchmal habe ich ein Brett vor dem Kopf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]