matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenPolynomabbildung, Matrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Polynomabbildung, Matrix
Polynomabbildung, Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomabbildung, Matrix: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 18:10 So 26.01.2014
Autor: Cccya

Aufgabe
Betrachten Sie die lineare Abbildung f: V3 --> V3 die durch f(p(X)) = p'(X) definiert ist.
a) Bestimmen Sie die f zugeordnete Matrix bezüglich der Basis
B = (1, 1-X, [mm] (1-X)^2, (1-X)^3) [/mm]

b) Berechnen Sie [mm] A^2 [/mm] = AA, [mm] A^3 [/mm] = [mm] AA^2 [/mm] und [mm] A^4 [/mm] = [mm] AA^3 [/mm]
. Welchen linearen Abbildungen von V3 nach V3 entsprechen diese Matrizen?

c) Es bezeichne E [mm] \in M_{4}(R) [/mm] die Einheitsmatrix. Welcher Abbildung g: V3 --> V3 entspricht die Matrix E-A? Beweisen Sie dass E-A invertierbar ist.

a) [mm] \pmat{ 0 & -1 & -2 & -3 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0} [/mm]

b) [mm] A^2 [/mm] = [mm] \pmat{ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} [/mm]

[mm] A^3 [/mm] = [mm] \pmat{ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} [/mm]

[mm] A^4 [/mm] = [mm] \pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0} [/mm]

Ist das richtig? Für [mm] A^3 [/mm] würde dann g(p(X))= p''(X) und für [mm] A^4 [/mm] g(p(X))=p'''(X)
passen. Aber für [mm] A^2 [/mm] finde ich keine passende Abbildung. Danke schonmal.

        
Bezug
Polynomabbildung, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 So 26.01.2014
Autor: angela.h.b.


> Betrachten Sie die lineare Abbildung f: V3 --> V3 die durch
> f(p(X)) = p'(X) definiert ist.
> a) Bestimmen Sie die f zugeordnete Matrix bezüglich der
> Basis
> B = (1, 1-X, [mm](1-X)^2, (1-X)^3)[/mm]
>  
> b) Berechnen Sie [mm]A^2[/mm] = AA, [mm]A^3[/mm] = [mm]AA^2[/mm] und [mm]A^4[/mm] = [mm]AA^3[/mm]
>  . Welchen linearen Abbildungen von V3 nach V3 entsprechen
> diese Matrizen?
>  
> c) Es bezeichne E [mm]\in M_{4}(R)[/mm] die Einheitsmatrix. Welcher
> Abbildung g: V3 --> V3 entspricht die Matrix E-A? Beweisen
> Sie dass E-A invertierbar ist.
>  a) [mm]\pmat{ 0 & -1 & -2 & -3 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0}[/mm]
>  

Hallo,

erklär mal, wie Du diese Matrix bekommen hast.

LG Angela

> b) [mm]A^2[/mm] = [mm]\pmat{ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}[/mm]
>  
> [mm]A^3[/mm] = [mm]\pmat{ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}[/mm]
>  
> [mm]A^4[/mm] = [mm]\pmat{ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0}[/mm]
>  
> Ist das richtig? Für [mm]A^3[/mm] würde dann g(p(X))= p''(X) und
> für [mm]A^4[/mm] g(p(X))=p'''(X)
>  passen. Aber für [mm]A^2[/mm] finde ich keine passende Abbildung.
> Danke schonmal.


Bezug
                
Bezug
Polynomabbildung, Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:06 So 26.01.2014
Autor: Cccya

Ich hab immer die Basiselement in f(p(X)) eingesetzt (als p(X)). Das Ergebnis dann in der Form [mm] a1+bx+cx^2+dx^3 [/mm] dargestellt und den Vektor (a,b,c,d) als Spalte genommen. Also für f(1) = [mm] 0*1+0*x+0*x^2+0*x^3 [/mm] und deshalb erste Spalte (0,0,0,0) für f(1-X)= [mm] -1*1+0*x+0*x^2+0*x^3, [/mm] deshalb zweite Spalte (-1,0,0,0).  Oder muss ich das Ergebnis in der Form [mm] a1+b(1-X)+c(1-X)^2+d(1-X)^3 [/mm] darstellen? Dann wäre die Matrix
[mm] \pmat{ 0 & -1 & 0 & 0\\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 } [/mm] ?

und dann passt glaube ich p(X) --> p''(X) für [mm] A^2, [/mm] p(X) --> p'''(X) für [mm] A^3 [/mm] und p(X) --> p''''(X) für [mm] A^4, [/mm] weil
[mm] A^2 [/mm] = [mm] \pmat{ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 } [/mm]

[mm] A^3 [/mm] = [mm] \pmat{ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 }[/mm]

Bezug
                        
Bezug
Polynomabbildung, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:49 Mo 27.01.2014
Autor: leduart

Hallo
du sollst doch die matrix zu der gegebenen Basis und nicht die Abbildung der 4 Vektoren bezüglich  der Basis [mm] 1,x,x^2,x^3 [/mm] darstellen. der Vektor
[mm] (1-x)^2 [/mm]  in Komponentenschreiweise ist (0,0,1,0) ^Ter wird abgebildet auf -2*(1-x) also
[mm] -2*((0,1,0,0)^T [/mm] usw

Gruß leduart

Bezug
                        
Bezug
Polynomabbildung, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 05:23 Mo 27.01.2014
Autor: angela.h.b.


> Ich hab immer die Basiselement in f(p(X)) eingesetzt (als
> p(X)). Das Ergebnis dann in der Form [mm]a1+bx+cx^2+dx^3[/mm]
> dargestellt und den Vektor (a,b,c,d) als Spalte genommen.

Hallo,

wenn Du dies tust, hast Du die Darstellungsmatrix bzgl. [mm] (1,(1-X),(1-X)^2,(1-X)^3) [/mm] in Urbild- und [mm] (1,X,X^2,X^3) [/mm] im Bildraum.
Diese war aber nicht gefragt.

>  Oder muss ich das Ergebnis in
> der Form [mm]a1+b(1-X)+c(1-X)^2+d(1-X)^3[/mm] darstellen?

Genau.


> Dann wäre
> die Matrix
> [mm]\pmat{ 0 & -1 & 0 & 0\\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 }[/mm]
> ?
>  
> und dann passt glaube ich p(X) --> p''(X) für [mm]A^2,[/mm] p(X)
> --> p'''(X) für [mm]A^3[/mm] und p(X) --> p''''(X) für [mm]A^4,[/mm] weil
> [mm]A^2[/mm] = [mm]\pmat{ 0 & 0 & 2 & 0\\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 }[/mm]
>  
> [mm]A^3[/mm] = [mm]\pmat{ 0 & 0 & 0 & -6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 }[/mm]
>  

Ja.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]