matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenPolynom Koeff.Vergleich
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Polynom Koeff.Vergleich
Polynom Koeff.Vergleich < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom Koeff.Vergleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Mi 04.04.2012
Autor: elmanuel

Aufgabe
Sei [mm] p(x)=\sum_{j=0}^{n}[p_j x^j] [/mm] ein (reeles) Polynom. Angenommen, es gibt ein Polynom q(x) [mm] =\sum_{j=1}^{n}[q_j x^j] [/mm]  mit [mm] (1+x^2)*q(x)=p(x). [/mm]

Finde Ausdrücke für die [mm] q_j [/mm] in den [mm] p_j [/mm] mit Hilfe eines Koeffizientenvergleichs in der Gleichung [mm] (1+x^2)*q(x)=p(x). [/mm]

Hinweis (Schreibe dazu die lInke Seite der Gleichung als Polynom der gleichen Form wie p(x), indem eine passende Indexverschiebung im zweiten Summanden von [mm] q(x)+x^2*q(x) [/mm] durchgeführt wird.

Hallo liebe Gemeinde!

Ich habe:

[mm] \sum_{j=0}^{n}[p_j x^j] [/mm] = [mm] (1+x^2) \sum_{j=1}^{n}[q_j x^j] [/mm]  

= [mm] \sum_{j=1}^{n}[q_j x^j] [/mm] + [mm] x^2* \sum_{j=1}^{n}[q_j x^j] [/mm]

= [mm] \sum_{j=1}^{n}[q_j x^j] [/mm] +  [mm] \sum_{j=1}^{n}[q_j x^j+2] [/mm]

jetzt habe ich ein paar Indexverschiebungen probiert...

= [mm] \sum_{j=0}^{n-1}[q_{j+1} x^{j+1}] [/mm] +  [mm] \sum_{j=0}^{n-1}[q_{j+1} x^{j+3}] [/mm]

= [mm] \sum_{j=3}^{n+2}[q_{j-2} x^{j-2}] [/mm] +  [mm] \sum_{j=3}^{n+2}[q_{j-2} x^j] [/mm]

und habe mir die Summenglieder zusammengefasst:

[mm] q_1*x [/mm] + [mm] q_2*x^2 [/mm] + [mm] (q_1+ q_3)x^3 [/mm] + [mm] (q_2+q_4)x^4 [/mm] + ... + [mm] (q_{n-1} [/mm] + [mm] q_{n+1})*x^{n+1} [/mm] + [mm] q_n*x^{n+2} [/mm]

= [mm] \sum_{j=0}^{n}[q_{j} (x^{j+2}+x^j] [/mm] - [mm] q_0*(x^2+1) [/mm]


nun... leider sehe ich nicht wie mich das bei der Fragestellung weiterbringt..

bin für jeden Tipp dankbar


        
Bezug
Polynom Koeff.Vergleich: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Mi 04.04.2012
Autor: leduart

Hallo
soll wirklich die Summe über die [mm] q_i [/mm] erst bei 1 anfangen? dann gilt sicher [mm] p_0=0 [/mm]
2. sollte direkt klar sein dass [mm] q_n [/mm] und [mm] q_{n-1}=0 [/mm]
da in deinem Tip nur von Indexverschiebung im 2 ten Summanden steht, denk ich auch die q Summe sollte bei p=0 anfangen.
aber wenn du dann si vorgehst hast du doch direkt eine beziehung zwischen den [mm] p_i [/mm] und [mm] q_i? [/mm]
bei deinem q(x) wär das [mm] p_0=0 p_1=q_1: p_2=q_2; [/mm]
[mm] p_k=q_k+q_{k-2} [/mm] fürk>2
Gruss leduart

Bezug
                
Bezug
Polynom Koeff.Vergleich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Mi 04.04.2012
Autor: elmanuel

danke leduart!


>  soll wirklich die Summe über die [mm]q_i[/mm] erst bei 1 anfangen?
> dann gilt sicher [mm]p_0=0[/mm]

ja die Angabe ist genau so mit dem Start bei 1... kann natürlich sein das es ein Druckfehler ist ...

--------------------------------

ich habe nochmals neu formuliert:

[mm] \sum_{j=0}^{n}[p_j x^j] [/mm] = [mm] (1+x^2) \sum_{j=1}^{n}[q_j x^j] [/mm]  

= [mm] \sum_{j=1}^{n}[q_j x^j] [/mm] + [mm] x^2* \sum_{j=1}^{n}[q_j x^j] [/mm]

= [mm] \sum_{j=1}^{n}[q_j x^j] [/mm] + [mm] \sum_{j=1}^{n}[q_j x^{j+2}] [/mm]

= [mm] \sum_{j=1}^{n}[q_j x^j] [/mm] + [mm] x^2* \sum_{j=3}^{n+2}[q_{j-2} x^j] [/mm]

[mm] \Rightarrow \sum_{j=0}^{n}[p_j x^j] [/mm] = [mm] \sum_{j=1}^{n} \begin{cases} q_j*x^j, & \mbox{für } j <=2 \\ (q_j+q_{j-2})*x^j, & \mbox{für } j>2 \end{cases} [/mm]

Anm: [mm] q_{n-1} [/mm] und [mm] q_n [/mm] müssen 0 sein da keine [mm] x^{n+1}, x^{n+2} [/mm] in p(x) möglich

[mm] \Rightarrow [/mm]  |     [mm] p_0=0 [/mm]    |    [mm] p_1=q_1 [/mm]    |    [mm] p_j=(q_j+q_{j-2}) [/mm] für j>2    !

korrekt?

Bezug
                        
Bezug
Polynom Koeff.Vergleich: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mi 04.04.2012
Autor: leduart

Hallo
ja,  die Anmerkung muss in das Ergebnis.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]