matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenPolynom 3tG  lineare Abbildung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Polynom 3tG lineare Abbildung
Polynom 3tG lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom 3tG lineare Abbildung: lineare Abbildung, Beweis
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 20.01.2009
Autor: tmjack

Aufgabe
Sei P3 der Vektorraum reellen Polynome vom Grad kleiner gleich 3.
Zeigen Sie, das die Abbildung l: P3 -> P3, mit L(p(x)) = p(x) - x * p´(x)
eine lineare Abbildung ist.
Anmerkung:
p(x) = [mm] ax^3+bx^2+cx+d [/mm]
p´(x) = [mm] ax^2+bx+c [/mm]
p´(x) ist die Ableitung von p(x)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
So ich habe jetzt mal einfach eingesetzt und ausgerechnet.

p(x) = p(x) - x * p´(x)

[mm] ax^3+bx^2+cx+d [/mm] = [mm] ax^3+bx^2+cx+d [/mm] - (x * [mm] ax^2+bx+c) [/mm]

[mm] ax^3+bx^2+cx+d [/mm] = [mm] ax^3+bx^2+cx+d [/mm] - [mm] ax^3-bx^2-cx [/mm]

[mm] ax^3+bx^2+cx+d [/mm] = d

Nur jetzt weiss ich nicht weiter, für mich wäre es ein Beweis wenn d = d stehen würde.
Danke für eure Antworten schon mal.



        
Bezug
Polynom 3tG lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Di 20.01.2009
Autor: schachuzipus

Hallo tmjack und herzlich [willkommenmr],

> Sei P3 der Vektorraum reellen Polynome vom Grad kleiner
> gleich 3.
>  Zeigen Sie, das die Abbildung l: P3 -> P3, mit L(p(x)) =

> p(x) - x * p´(x)
>  eine lineare Abbildung ist.
>  Anmerkung:
>  p(x) = [mm]ax^3+bx^2+cx+d[/mm]
>  p´(x) = [mm]ax^2+bx+c[/mm]
> p´(x) ist die Ableitung von p(x)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  So ich habe jetzt mal einfach eingesetzt und
> ausgerechnet.
>  
> p(x) = p(x) - x * p´(x)
>  
> [mm]ax^3+bx^2+cx+d[/mm] = [mm]ax^3+bx^2+cx+d[/mm] - (x * [mm]ax^2+bx+c)[/mm]
>  
> [mm]ax^3+bx^2+cx+d[/mm] = [mm]ax^3+bx^2+cx+d[/mm] - [mm]ax^3-bx^2-cx[/mm]
>  
> [mm]ax^3+bx^2+cx+d[/mm] = d
>  
> Nur jetzt weiss ich nicht weiter, für mich wäre es ein
> Beweis wenn d = d stehen würde.

Tut mir leid, aber das ist überhaupt kein Beweis.

Weißt du, was du zeigen musst?

Was heißt es für eine Abbildung [mm] $L:P_3\to P_3$ [/mm] linear zu sein?

Doch zweierlei:

(1) Für beliebige $p(x), [mm] q(x)\in P_3$ [/mm] gilt $L(p(x)+q(x))=L(p(x))+L(q(x))$

(2) Für alle [mm] $\lambda\in\IR$ [/mm] und für beliebiges [mm] $p(x)\in P_3$ [/mm] gilt [mm] $L(\lambda\cdot{}p(x))=\lambda\cdot{}L(p(x))$ [/mm]

Nimm dir also beliebige [mm] $p(x)=a_1x^3+b_1x^2+c_1x+d_1$ [/mm] und [mm] $q(x)=a_2x^3+b_2x^2+c_2x+d_2$ [/mm] her und rechne (1) nach

[mm] $L(p(x)+q(x))=L((a_1x^3+b_1x^2+c_1x+d_1)+(a_2x^3+b_2x^2+c_2x+d_2)=L((a_1+a_2)x^3+(b_1+b_2)x^2+(c_1+c_2)x+(d_1+d_2))=......$ [/mm]

weiter umformen, die Definition von L benutzen, bis du $....=L(p(x))+L(q(x))$ dastehen hast

Bei (2) ähnlich, nimm dir ein beliebiges [mm] $\lambda\in\IR$ [/mm] her und ein [mm] $p(x)\in P_3$ [/mm] (wie oben), dann rechne es ebenso nach


>  Danke für eure Antworten schon mal.
>  
>  


LG

schachuzipus

Bezug
                
Bezug
Polynom 3tG lineare Abbildung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:20 Do 22.01.2009
Autor: tmjack

Soll ich für a1,a2,b1,b2,c1,c2 oder für x beliebige Zahlenwerte wählen?
So weit wie du umgeformt hast das habe ich verstanden, nur wie soll ich die L definition anwenden es würde doch für L(p(x)) = d raus kommen und das müsste ich dann einsetzten das d oder?



Bezug
                        
Bezug
Polynom 3tG lineare Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Do 22.01.2009
Autor: angela.h.b.


> Soll ich für a1,a2,b1,b2,c1,c2 oder für x beliebige
> Zahlenwerte wählen?

Hallo,

[willkommenmr].

Natürlich sollst Du das nicht tun!.

>  So weit wie du umgeformt hast das habe ich verstanden, nur
> wie soll ich die L definition anwenden es würde doch für
> L(p(x)) = d raus kommen und das müsste ich dann einsetzten
> das d oder?

Sie meinen?

Vielleicht schreibst Du mal auf, wie weit Du bist.

Komplett.

Mit "zu zeigen:..." und allem Drum und Dran.

Denn hier geht's ja nicht in erster Linie um irgendwelche läppischen Rechenschritte, sondern ums Verständnis der Linearität.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]