matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPolygonzugverfahren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Polygonzugverfahren
Polygonzugverfahren < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polygonzugverfahren: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 10:00 Do 28.05.2009
Autor: Firecrow

Aufgabe
a) Berechnen Sie für die Differentialgleichung
y0(t) = t · y(t)
mit Anfangswert y(0) = 1 und die Schrittweiten h1 = 1/2 , h2 = 1/4 , h3 = 1/8
jeweils eine Näherung an y(1).

b) Lösen Sie die Differentialgleichung aus (a), indem Sie zunächst
vermuten, dass die Lösung y der Differentialgleichung die Gestalt
y(t) = c · exp(g(t)) hat mit einer Konstanten c und einer differenzierbaren
zu suchenden Funktion g (Achtung: Kettenregel!). Wählen Sie c und g(t)
so, dass auch der Anfangswert erfüllt ist. Vergleichen Sie y an der Stelle 1
mit den Näherungen aus (a).

Kann mir hier vielleicht jamend n Tipp geben. Ich komm mit dem Polygonzuverfahren nicht so recht klar. Ich habe keine Idee wie ich da anfangen soll.

Mfg Fire

        
Bezug
Polygonzugverfahren: Eulerverfahren
Status: (Antwort) fertig Status 
Datum: 12:06 Do 28.05.2009
Autor: generation...x

Rechnen wir's mal für [mm] h_1=0,5 [/mm] zusammen durch:

Startwert ist y(0)=1.

[mm]y(1*h_1)=y(0*h_1) + h_1 * f(0*h_1; y(0*h_1)) \gdw[/mm]
[mm]y(0,5)=y(0) + 0,5 * f(0; y(0)) \gdw[/mm]
[mm]y(0,5)=1 + 0,5 * 0 * 1 = 1[/mm]

[mm]y(2*h_1)=y(1*h_1) + h_1 * f(1*h_1; y(1*h_1)) \gdw[/mm]
[mm]y(1)=y(0,5) + 0,5 * f(0,5 ; y(0,5)) \gdw[/mm]
[mm]y(1)=1 + 0,5 * 0,5 * 1 = 1,25[/mm]

Jetzt mach das mal für die anderen Schrittweiten (vielleicht solltest du dabei technische Hilfsmittel verwenden, Excel tut's z.B. schon).


Bezug
        
Bezug
Polygonzugverfahren: Link
Status: (Antwort) fertig Status 
Datum: 12:21 Do 28.05.2009
Autor: generation...x

Noch ein Tipp zur Kontrolle für b):
[]WolframAlpha kennt die Lösung.

Aber erstmal selbst rechnen bitte [happy]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]