matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenPolstellen und Asymptoten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Polstellen und Asymptoten
Polstellen und Asymptoten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen und Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Mo 03.02.2014
Autor: Idefix_2013

Hallo zusammen,

ich habe eine allgemeine Frage zum Thema Polstelle!

Z.B.: Hat die Funktion [mm] f(x)=\bruch{1}{x^2} [/mm] in [mm] x_{0}=0 [/mm] eine Polstelle?
Ich hab mal irgendwo gehört, dass für eine Polstelle die Grenzwerte für [mm] x\to0+ [/mm] und [mm] x\to0- [/mm] unterschiedlich sein müssen, stimmt das?

Und hat die Funktion [mm] g(x)=(x-2)*e^x [/mm] eine waagrechte Asymptote?

Vielen Dank für die Hilfe!

        
Bezug
Polstellen und Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 03.02.2014
Autor: Richie1401

Hi,

> Hallo zusammen,
>  
> ich habe eine allgemeine Frage zum Thema Polstelle!
>  
> Z.B.: Hat die Funktion [mm]f(x)=\bruch{1}{x^2}[/mm] in [mm]x_{0}=0[/mm] eine
> Polstelle?

Ja, hat sie, und zwar ein Pol zweiter Ordnung.

>  Ich hab mal irgendwo gehört, dass für eine Polstelle die
> Grenzwerte für [mm]x\to0+[/mm] und [mm]x\to0-[/mm] unterschiedlich sein

Wo hast du das gehört?

> müssen, stimmt das?

Nein.

Es gibt Polstellen, wo sich das Vorzeichen wechselt aber auch welche ohne Wechsel. Dazu vielleicht einmal dieser Link:

http://www.serlo.org/math/wiki/article/view/polstelle

>  
> Und hat die Funktion [mm]g(x)=(x-2)*e^x[/mm] eine waagrechte
> Asymptote?

Jop. Schau dir dazu einmal den Grenzwert [mm] x\to-\infty [/mm] an.
Für [mm] x\to\infty [/mm] explodiert die Funktion ja geradezu. Das sieht man sicherlich sofort ein.



Bezug
                
Bezug
Polstellen und Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Mo 03.02.2014
Autor: Idefix_2013

Okay, vielen Dank!

Zu g(x): Also spricht man in diesem Fall von einer Asymptote? Weil sie nähert sich ja nur für [mm] x\to-\infty [/mm] an die x-Achse an.

Danke!

Bezug
                        
Bezug
Polstellen und Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Di 04.02.2014
Autor: Valerie20


> Okay, vielen Dank!

>

> Zu g(x): Also spricht man in diesem Fall von einer
> Asymptote? Weil sie nähert sich ja nur für [mm]x\to-\infty[/mm] an
> die x-Achse an.

Nein, so kann man das nicht sagen.
Es gibt sowohl senkrechte als auch waagerechte Asymptoten.

In f(x) ist x=0 eine senkrechte asymptote (Polstelle).
Bei g(x) hast du für x gegen minus unendlich eine waagerechte asymptote bei y=0.

Sieh dir deine Unterlagen nocheinmal genau durch, oder hier:

http://www.poenitz-net.de/Mathematik/4.Funktionen/4.6.S.Rationale%20Funktionen.pdf
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]