matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenPolstelle bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Polstelle bestimmen
Polstelle bestimmen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstelle bestimmen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:05 Di 25.09.2007
Autor: krueemel

Aufgabe
Polstelle bestimmen der Gleichung: f(x) = [mm] \bruch{x^{4}-8x²+16}{2x²} [/mm]

Also, wir sollen die Polstelle bestimmen, ich weiß aber nicht warum, habe aber die Lösung:

Linearfaktorzerlegung:
[mm] \bruch{(x-2)²*(x+2)²}{2x²} [/mm]

Polstellen:
2x² = 0
Senkrechte Asymptote für x = 0 ohne Vorzeichenwechsel, da die Nennernullstelle einen geraden Grad besitzt.

Das ist die Lösung, aber wie kommt man auf diese Lösung?

viele liebe Grüße

        
Bezug
Polstelle bestimmen: Nullstellen des Nenners
Status: (Antwort) fertig Status 
Datum: 14:10 Di 25.09.2007
Autor: Roadrunner

Hallo krueemel!


[aufgemerkt] Polstellen sind die Nullstellen des Nenners, die  nicht gleichzeitig auch Nullstellen des Zählers sind.

Da hier die Nullstelle im Nenner wegen [mm] $x^{\red{2}}$ [/mm] als doppelte Nullstelle (= gerader Grad) auftritt, handelt es sich um eine Polstelle ohne Vorzeichenwechsel.

Bei einem ungeraden Grad wäre die Polstelle mit Vorzeichenwechsel.


Gruß vom
Roadrunner


Bezug
                
Bezug
Polstelle bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Di 25.09.2007
Autor: krueemel


> Hallo krueemel!
>  
>
> [aufgemerkt] Polstellen sind die Nullstellen des Nenners,
> die  nicht gleichzeitig auch Nullstellen des Zählers sind.
>  
> Da hier die Nullstelle im Nenner wegen [mm]x^{\red{2}}[/mm] als
> doppelte Nullstelle (= gerader Grad) auftritt, handelt es
> sich um eine Polstelle ohne Vorzeichenwechsel.
>  
> Bei einem ungeraden Grad wäre die Polstelle mit
> Vorzeichenwechsel.
>  
>
> Gruß vom
>  Roadrunner
>  

Ah okay, verstehe, aber warum ist es nun eine senkrechte Asymptote bei x = 0 ?

Und was passiert, wenns es gerade und ungerade Grade gibt?


viele liebe Grüße

Bezug
                        
Bezug
Polstelle bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Mi 26.09.2007
Autor: Schalk

Hallo krueemel,

wie Roadrunner schon richtig schrieb, erhält man die Polstellen, indem man den Nenner gleich null setzt. Bei der Funktion, die Du angegeben hast, ist das [mm] 2x^{2}. [/mm] Wenn Du das gleich null setzt, gibt es nur eine Lösung, nämlich x=0. An dieser Stelle ist sozusagen eine "Lücke". Da eine Funktion so definiert ist, dass zu jedem x-Wert genau ein Y-Wert zugeordnet wird, ist die Stelle 0 eine senkrechte Asymptote. D. h. für den x-Wert 0 gibt es keinen Y-Wert (Daher ist die Asymptote senkrecht!).
Der Grad des Nenners, d. h. die Höhe der Potenz, hat etwas mit der Charaktereigenschaft der Polstelle zu tun. Wie Roadrunner schon schrieb, kann dies mit oder ohne Vorzeichenwechsel sein.
Ich hoffe, dass Deine Fragen beantwortet sind.

Schöne Grüße
Schalk

Bezug
                                
Bezug
Polstelle bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Mi 26.09.2007
Autor: krueemel

Vielen lieben Dank euch beiden =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]