matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKrypto,Kodierungstheorie,ComputeralgebraPollard's Rho-Methode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Krypto,Kodierungstheorie,Computeralgebra" - Pollard's Rho-Methode
Pollard's Rho-Methode < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pollard's Rho-Methode: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:50 Di 01.11.2011
Autor: julsch

Aufgabe
In Pollard's Rho-Methode habe das Anfangsstück Länge i und der Kreis Länge j-i. Zeigen Sie, dass sich die beiden Känguruhs (Känguruh 1 springt immer einen Schritt, Känguruh 2 springt 2 Schritte) im Punkt [mm] s_{m}=s_{2m} [/mm] treffen, wobei
m = [mm] (j-i)*[\bruch{i}{j-i}]. [/mm]
[ ] bezeichnet die Gaußklammer. Es ist nützlich die Identität x mod y = x - [mm] y*\{\bruch{i}{j-i}\} [/mm] zu benutzen, wobei { } die untere Gaußklammer bezeichnet (Abrunden).

Hallo zusammen,
ich hab ein paar Probleme mit der Aufgabe. Ich hab mir überlegt, dass die Känguruhs sich vor i Schritten nicht treffen können, da das erste Känguruh (K1) immer einen Schritt geht und das zweite (K2) immer 2 Schritte springt.
Ich hab nun eine Fallunterscheidung gemacht,
1.Fall: Die Kanguruhs treffen sich im Punkt i, dann wäre ich feritg.
2.Fall: Die Känguruhs treffen sich nicht im Punkt i. Es gilt dann aber, dass K2 weniger als (j-i) Schritte von K1 entfernt ist.
Ich hatte nun mehrere Ansätze, aber irgendwie gingen alle daneben. Ich hab schon ein Problem allgemein zu sagen, in welchem Punkt sich die Kanguruhs nach k Schritten befinden. Ist k<j, so befindet K1 sich ja im Punkt k. K2 ist bis dahin ja 2k Schritte vorangekommen, d.h. ich muss in irgendeiner Form einen Modulo verwenden, der K2 auf dem Kreis laufen lässt. Ich hatte mir überlegt, dass für die Känguruhs gelten könnte
K1 befindet sich nach k Schritten im Punkt [mm] s_{k}=k [/mm] mod(j-i) + i
K2 befindet sich nach k Schritten im Punkt [mm] s_{k}=2k [/mm] mod (j-i) + i

Nur leider komm ich mit dem Ansatz nich weiter.
Ich hatte mir dann mal das Beispiel i=5 und j=13 vorgenommen. Dort treffen sich die Kanuruhs nach 8 Schritten, jedoch würde ich duch meine Formeln rausbekommen
K1: 8 mod8 + 5 = 0+5=5
K2: 16 mod 8 + 5 =0+5=5

Das Stimmt ja nicht mit dem eigentlichen Treffpunkt überein, also muss in meiner Überlegung schon ein Fehler sein.
Kann mir jemand weiterhelfen?

Liebe Grüße

Julsch

        
Bezug
Pollard's Rho-Methode: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 03.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]