matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenPolarkoordinatentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Trigonometrische Funktionen" - Polarkoordinatentransformation
Polarkoordinatentransformation < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Do 01.05.2008
Autor: tedd

Aufgabe
Transformieren sie gegeben Funktion in Polarkoordinaten.

Hi!
Ich habe Probleme folgende Funktion in Polarkoordinaten zu transformieren:
[mm](x^2+y^2)^2-4*x^3+12*x*y^2=0[/mm]

also mit
[mm]r=\sqrt{x^2+y^2}[/mm]
[mm]r^2=x^2+y^2[/mm]
[mm]x=\cos\phi*r[/mm] und
[mm]y=\sin\phi*r[/mm]

komme ich auf
[mm]r^4-4*(\cos\phi*r)^3+12*\cos\phi*r*(\sin\phi*r)^2=0[/mm]
aber von da komme ich irgendwie nicht weiter.
Als Ergebnis soll wohl
[mm]r=4*\cos(3*\phi)[/mm] rauskommen.
Wie rechne ich jetzt weiter oder was muss ich anders machen?
Danke schonmal im vorraus und beste Grüße,
tedd ;)

        
Bezug
Polarkoordinatentransformation: 2 Tipps
Status: (Antwort) fertig Status 
Datum: 17:18 Do 01.05.2008
Autor: Loddar

Hallo tedd!


Verwende hier [mm] $\sin^2(\phi) [/mm] \ = \ [mm] 1-\cos^2(\phi)$ [/mm] sowie das Additionstheorem [mm] $\cos(3*\phi) [/mm] \ = \ [mm] 4*\cos^3(\phi)-3*\cos(\phi)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Polarkoordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Do 01.05.2008
Autor: tedd

Hey Loddar, danke für die Antwort.
Die beiden Sachen helfen mir weiter. Der trigonometrische Pythagoras ist mir klar aber wie ich mit den Additionstheoremen auf [mm]\cos(3*\phi) = 4*\cos^3(\phi)-3*\cos(\phi)[/mm] ist mir nicht ganz klar. Wäre sehr dankbar wenn man mir das nochmal erklären könnte :)
Danke  und Gruß,
tedd

Bezug
                        
Bezug
Polarkoordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Do 01.05.2008
Autor: schachuzipus

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo tedd,

verwende 2mal die Additionstheoreme für $\sin$ und $\cos$ und die Beziehung $\sin^2(x)+\cos^2(x)=1$


$\cos(3\phi)=\cos(2\phi+\phi)=\red{\cos(2\phi)}\cos(\phi)-\blue{\sin(2\phi)}\sin(\phi) \qquad $ Additionstheorem für $\cos$

$=\red{[\cos(\phi)\cos(\phi)-\sin(\phi)\sin(\phi)]}\cos(\phi)-\blue{\left[\\sin(\phi)\cos(\phi)+\sin(\phi)\cos(\phi)]}\sin(\phi) \qquad$ Additionstheorem für $\cos$ und  $\sin$

$=[\cos^2(\phi)-\green{\sin^2(\phi)}]\cos(\phi)-2\cos(\phi)\green{\sin^2(\phi)}$

$=[\cos^2(\phi)-\green{(1-\cos^2(\phi))}]\cos(\phi)-2\cos(\phi)\green{(1-\cos^2(\phi))}$

Das fasse nun mal alles nett zusammen....


Gruß

schachuzipus



Bezug
                                
Bezug
Polarkoordinatentransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Sa 03.05.2008
Autor: tedd

Danke!
Jetzt kann ichs nachvollziehen :)
Habs so zusammengefasst:
[mm]cos(3\phi)[/mm]
[mm]=[\cos^2(\phi)-(1-\cos(\phi))]*\cos(\phi)-2*\cos(\phi) (1-\cos^2(\phi))[/mm]
[mm]=(2*\cos^2(\phi)-1)*\cos(\phi)-2*\cos(\phi)+2*\cos^3(\phi)[/mm]
[mm]=2*\cos^3(\phi)-\cos(\phi)-2*\cos(\phi)+2*\cos^3(\phi)[/mm]
[mm]=4*\cos^3(\phi)-3*\cos(\phi)[/mm]

Hab die gesamte Aufgabe dann so gelöst:

[mm] (x^2+y^2)^2-4*x^3+12*xy^2=0 [/mm]
[mm] r^4-4*\cos^3(\phi)*r^3+12*\cos(\phi)*r*sin^2(\phi)*r^2=0 [/mm]
[mm] r^3*(r-4*\cos^3(\phi)+12*\cos(\phi)*\sin^2(\phi))=0 [/mm]
[mm] r^3*(r-4*\cos^3(\phi)+12*\cos(\phi)*(1-\cos^2(\phi))=0 [/mm]
[mm] r^3*(r-4*\cos^3(\phi)+12*\cos(\phi)-12*\cos^3(\phi))=0 [/mm]
[mm] -r^3*(-r+4*\cos^3(\phi)-3*\cos(\phi)+4*\cos^3(\phi)-3*\cos(\phi)+4*\cos^3(\phi)-3*\cos(\phi)+4*\cos^3(\phi)-3*\cos(\phi))=0 [/mm]
[mm] -r^3*(-r+4*\cos(3\phi))=0 [/mm]
[mm] r^4-4*\cos(3\phi)*r^3=0 [/mm]
[mm] r^4=4*\cos(3\phi)*r^3 [/mm]
[mm] r=4*\cos(3\phi) [/mm]

Ich nehm an es wird so rihtig sein. Danke für eure Hilfe ihr 2.
Beste Grüße,
tedd


Ahh verzeihung ich habe den Artikel versehentlich als weitere Frage gepostet

Bezug
                                        
Bezug
Polarkoordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Sa 03.05.2008
Autor: MathePower

Hallo tedd,

> Danke!
>  Jetzt kann ichs nachvollziehen :)
>  Habs so zusammengefasst:
>  [mm]cos(3\phi)[/mm]
>  [mm]=[\cos^2(\phi)-(1-\cos(\phi))]*\cos(\phi)-2*\cos(\phi) (1-\cos^2(\phi))[/mm]
>  
> [mm]=(2*\cos^2(\phi)-1)*\cos(\phi)-2*\cos(\phi)+2*\cos^3(\phi)[/mm]
>  [mm]=2*\cos^3(\phi)-\cos(\phi)-2*\cos(\phi)+2*\cos^3(\phi)[/mm]
>  [mm]=4*\cos^3(\phi)-3*\cos(\phi)[/mm]
>  
> Hab die gesamte Aufgabe dann so gelöst:
>  
> [mm](x^2+y^2)^2-4*x^3+12*xy^2=0[/mm]
>  [mm]r^4-4*\cos^3(\phi)*r^3+12*\cos(\phi)*r*sin^2(\phi)*r^2=0[/mm]
>  [mm]r^3*(r-4*\cos^3(\phi)+12*\cos(\phi)*\sin^2(\phi))=0[/mm]
>  [mm]r^3*(r-4*\cos^3(\phi)+12*\cos(\phi)*(1-\cos^2(\phi))=0[/mm]
>  [mm]r^3*(r-4*\cos^3(\phi)+12*\cos(\phi)-12*\cos^3(\phi))=0[/mm]
>  
> [mm]-r^3*(-r+4*\cos^3(\phi)-3*\cos(\phi)+4*\cos^3(\phi)-3*\cos(\phi)+4*\cos^3(\phi)-3*\cos(\phi)+4*\cos^3(\phi)-3*\cos(\phi))=0[/mm]
>  [mm]-r^3*(-r+4*\cos(3\phi))=0[/mm]
>  [mm]r^4-4*\cos(3\phi)*r^3=0[/mm]
>  [mm]r^4=4*\cos(3\phi)*r^3[/mm]
>  [mm]r=4*\cos(3\phi)[/mm]


Stimmt. [ok]

>  
> Ich nehm an es wird so rihtig sein. Danke für eure Hilfe
> ihr 2.
>  Beste Grüße,
>  tedd
>  
> Ahh verzeihung ich habe den Artikel versehentlich als
> weitere Frage gepostet

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]