matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPolarkoordinaten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - Polarkoordinaten
Polarkoordinaten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Sa 12.03.2011
Autor: Lentio

Hallo,

begreife dese Aufgabe irgendwie nicht so recht.

Ich habe mich zwar daran versucht, aber meine Ansätze lassen wahrscheinlich jeden aus dem Fenster springen
okay, hier was ich bisher gemacht habe:
Da die Funktion in den R abbildet:

[mm] 0=-x-(4-x^2)/2 [/mm]

[mm] x=rcos\alpha [/mm] eingesetzt und umgeformt:
   [mm] r^2+ \bruch{2cos\alpha}{cos^2\alpha}r-\bruch{4}{cos^2\alpha} [/mm] für [mm] \alpha \not=\bruch{k}{2}\pi,k \in [/mm] N, k ungerade

[mm] r=\bruch{-2 \pm \wurzel{17}}{2cos\alpha}. [/mm]

somit [mm] x=\bruch{-2 \pm \wurzel{17}}{2cos\alpha}cos\alpha. [/mm]
Ist natürlich alles *****.

Über Hilfe wäre ich dankbar.


mfg,


Lentio.

        
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Sa 12.03.2011
Autor: schachuzipus

Hallo,

um welche Funktion handelt es sich?

Poste bitte die Aufgabenstellung im Originalwortlaut!

Gruß

schachuzipus


Bezug
                
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:44 Sa 12.03.2011
Autor: Lentio

Ups, total verschwitzt!

Hier die Aufgabenstellung:


Sei [mm] G=\{(x,y)\in\IR^2|x^2+y^2=4\} [/mm]   und [mm] f:G\to\IR [/mm] mit [mm] f(x,y)=x-y^2/2 [/mm]


Geben sie für die Funktion eine Darstellung in eben Polarkoordinaten, in der die Radialvariabel r nicht vorkommt.

Bezug
        
Bezug
Polarkoordinaten: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:52 Sa 12.03.2011
Autor: Loddar

Hallo Lentio!


Aus der Darstellung von $G_$ und durch Einsetzen der Polarkoordinaten mit $x \ = \ [mm] r*\cos(\alpha)$ [/mm] bzw. $y \ = \ [mm] r*\sin(\alpha)$ [/mm] folgt doch unmittelbar, dass [mm] $r^2 [/mm] \ = \ 4$  [mm] $\Rightarrow$ [/mm]  $r \ = \ 2$ .


Gruß
Loddar


Bezug
                
Bezug
Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Sa 12.03.2011
Autor: Lentio

Danke für die schnelle Antwort.

Also ist das Ergebnis einfach nur x=2 (da Wertebereich in R) ?

mfg


lentio

Bezug
                        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Sa 12.03.2011
Autor: kamaleonti

Hi Lentio,
> Danke für die schnelle Antwort.
>  
> Also ist das Ergebnis einfach nur x=2 (da Wertebereich in R) ?

Nein.
Wir haben:
[mm] \qquad [/mm] $ [mm] G=\{(x,y)\in\IR^2|x^2+y^2=4\} [/mm] $ sowie $ [mm] f:G\to\IR [/mm] $ mit $ [mm] f(x,y)=x-y^2/2 [/mm] $
Nun ist [mm] x=2\cos\alpha, y=2\sin\alpha [/mm] (wegen r=2 in der Polarkoordinatendarstellung)

Wie sieht nun die Funktion unter dieser Darstellung aus?

>  
> mfg
>  
>
> lentio

LG

Bezug
                                
Bezug
Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Sa 12.03.2011
Autor: Lentio

Meinst du das:

[mm] f(2cos\alpha, [/mm] 2sin [mm] \alpha)= 2(cos\alpha-sin^2\alpha)? [/mm]


mfg

Bezug
                                        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Sa 12.03.2011
Autor: kamaleonti

Hi,
> Meinst du das:
>  
> [mm]f(2cos\alpha,[/mm] 2sin [mm]\alpha)= 2(cos\alpha-sin^2\alpha)?[/mm]

Ich vermute es ist etwas anderes gemeint, denn die Punkte in G hängen nur noch vom Parameter [mm] \alpha [/mm] ab:
[mm] \qquad $G=\{(2\cos\alpha, 2\sin\alpha)|\alpha\in[0,2\pi]\}$ [/mm]
Damit ließe sich auch eine Funktion mit nur einen Parameter konstruieren, etwa folgendes g:
[mm] \qquad [/mm] $g:[0, [mm] 2\pi]\to\IR, g(\alpha)=2(\cos\alpha-\sin^2\alpha)$ [/mm]

Der Hinweis der Aufgabenstellung "Geben sie für die Funktion eine Darstellung in eben Polarkoordinaten, in der die Radialvariabel r nicht vorkommt. " deutet auf diese Variante hin, denn hier bekommt g als Argument lediglich den Polarkoordinatenwinkel

>  
>
> mfg

Gruß

Bezug
                                                
Bezug
Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Sa 12.03.2011
Autor: Lentio

Vielen Dank!!

ICh hätte leider noch eine weitere Frage. Wie kann man denn jetzt direkt aus der  Funktion f die  partielle Ableitung [mm] \bruch{\partial g }{\partial \alpha} [/mm] berechnen?

mfg

Bezug
                                                        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Sa 12.03.2011
Autor: MathePower

Hallo Lentio,

> Vielen Dank!!
>  
> ICh hätte leider noch eine weitere Frage. Wie kann man
> denn jetzt direkt aus der  Funktion f die  partielle
> Ableitung [mm]\bruch{\partial g }{\partial \alpha}[/mm] berechnen?


Differenziere

[mm]g\left(\alpha\right):=f\left( x\left(\alpha\right), \ y\left(\alpha\right) \ \right)[/mm]

mit Hilfe der Kettenregel,


>
> mfg


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]