matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriePolarkoordianten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - Polarkoordianten
Polarkoordianten < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordianten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Di 04.07.2006
Autor: hanesy

Aufgabe
Sei K die Kardioide [mm] r=1+cos(\varphi) [/mm] mit [mm] (0<=\varphi<= 2*\pi) [/mm] .
Berechne den Schwerpunkt K mit
[mm] K=((1/(m_2(K))* \integral_{K}^{}{(x) dm_2(x,y)},1/(m_2(K))* \integral_{K}^{}{(y) dm_2(x,y)}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo an alle,
ich habe zu der Aufgabe folgende Frage:
so wie ich das sehe ist der Schwerpunkt in kartesischen Koordinaten gegeben ud um die in der Definition von K genannten Integrale zu berechnen muss ich doch eine Gleichung der Kardioide im Kartesischen Koordinantensystem finden oder??? ich tue mich damit nämlich sehr schwer.
Kann ich denn [mm] m_2(K) [/mm] an Hand der Polarkoordinaten berechnen oder soll ich auch hier den Weg ins Kartesische suchen ???
Habe dammit insgesamt Probleme weil die Polarkoordiaten mir ja keine integrierbare Funktion oder ähnlich liefern.
Danke daher für jede Hilfe
Viele Grüße Hannes

        
Bezug
Polarkoordianten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Di 04.07.2006
Autor: MatthiasKr

Hallo Hannes,

> Sei K die Kardioide [mm]r=1+cos(\varphi)[/mm] mit [mm](0<=\varphi<= 2*\pi)[/mm]
> .
>  Berechne den Schwerpunkt K mit
> [mm]K=((1/(m_2(K))* \integral_{K}^{}{(x) dm_2(x,y)},1/(m_2(K))* \integral_{K}^{}{(y) dm_2(x,y)})[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Hallo an alle,
>  ich habe zu der Aufgabe folgende Frage:
>  so wie ich das sehe ist der Schwerpunkt in kartesischen
> Koordinaten gegeben ud um die in der Definition von K
> genannten Integrale zu berechnen muss ich doch eine
> Gleichung der Kardioide im Kartesischen Koordinantensystem
> finden oder???

eigentlich nicht, nein.

ich tue mich damit nämlich sehr schwer.

>  Kann ich denn [mm]m_2(K)[/mm] an Hand der Polarkoordinaten
> berechnen oder soll ich auch hier den Weg ins Kartesische
> suchen ???

mache dir erstmal klar wie diese kurve aussieht (internet hilft!). du sollst die von der kurve eingeschlossene fläche berechnen, was ja das integral der 1-funktion über die fläche ist.

allerdings bietet es sich natürlich an, hier in polarkoordinaten zu rechnen. überlege dir hierzu, wie [mm] \varphi [/mm] und r laufen müssen um die fläche zu charakterisieren. außerdem darfst du nicht vergessen das Polar-Volumenelement zu verwenden [mm] ($dV=r\;dr\;d\varphi$). [/mm]

Hast du einmal dieses prinzip verstanden, kannst du auch leicht die weiteren integrale (mit integranden x bzw. y) bestimmen.

Gruß
Matthias




> Habe dammit insgesamt Probleme weil die Polarkoordiaten mir
> ja keine integrierbare Funktion oder ähnlich liefern.
>  Danke daher für jede Hilfe
>  Viele Grüße Hannes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]