matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOptikPolarisationswinkel, Reflexion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Optik" - Polarisationswinkel, Reflexion
Polarisationswinkel, Reflexion < Optik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Optik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarisationswinkel, Reflexion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 09.01.2013
Autor: Wieselwiesel

Aufgabe
Ein polarisierter Lichtstrahl trifft unter dem Winkel von 30° (vom Lot) auf eine
Glasscheibe. Der reflektierte Strahl hat einen Polarisationswinkel von genau 45°
bezüglich der Einfallsebene. Wie groß ist der Polarisationswinkel (gemessen bezüglich
der Einfallsebene) des einfallenden Strahls?

Hallo,

Ich hab Probleme bei dieser Aufgabe, ich weiss einfach nicht wie ich auf den Polarisationswinkel des einfallenden Strahls komme. Ich hab schon die Reflexionskoeffizienten der parallelen und normalen Komponenten vom polarisierten Strahl berechnet: [mm] r_{\parallel} [/mm] = 0,217 und [mm] r_{\perp} [/mm] = -0,182
Aber ich weiss einfach nicht in welchem Zusammenhang die Polarisationswinkel von einfallendem und ausfallendem Strahl stehen. Oder ist das vielleicht eine Fangfrage, also dass sich der Polarisationswinkel bei der Brechung garnicht ändert(ich hab ja keinen Brewster Winkel)?

Für Hilfe wär ich sehr dankbar!

        
Bezug
Polarisationswinkel, Reflexion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 09.01.2013
Autor: Event_Horizon

Hallo!

Jede polarisierte Welle lässt sich aufteilen in eine waagerechte und eine senkrechte Komponente.
Bei der Reflexion ändert sich die Amplitude jeder Komponente unabhängig voneinander.
Der Brewster-Winkel ist der Spezialfall, bei dem die eine Komponente völlig verschwindet, so daß das Licht  nur noch aus anderen Komponente besteht. Aber den Fall hast du hier nicht:

In deiner Aufgabe hast du nach der Reflexion einen 45°-Strahl, das heiß, waagerechte und senkrechte Komponente besitzen die gleiche Amplitude. Nennen wir die mal a.

Jetzt hast du schon die Reflexionskoeffizienten angegeben. Wie groß sind denn dann die beiden Amplituden vor der Reflexion? Wenn du das weißt, kannst du auch den Polarisationswinkel vor der Reflexion bestimmen.

Bezug
                
Bezug
Polarisationswinkel, Reflexion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mi 09.01.2013
Autor: Wieselwiesel

Hmm, also die Amplituden sind:
[mm] E_{\parallel, r} [/mm] = [mm] E_{\parallel, 0} [/mm] * [mm] r_{\parallel} [/mm]
[mm] E_{\perp, r} [/mm] = [mm] E_{\perp, 0} [/mm] * [mm] r_{\perp} [/mm]
und wenn bei 45° [mm] E_{\parallel, r} [/mm] = [mm] E_{\perp, r} [/mm] sind dann hab ich aber immer noch 2 Unbekannte in meiner Rechnung.
Den Polarisationswinkel würd ich ja mit der Formel bekommen: [mm] E_{r} [/mm] = [mm] E_{0} [/mm] * [mm] cos{\theta_{pol}} [/mm]
also: [mm] \theta_{pol} [/mm] = [mm] arccos(\bruch{E_{r}}{E_{0}}) [/mm]
hmm, jetzt könnt ich ja die Reflexionsfaktoren im Bruch im arccos einsetzen, aber wie? Addieren, geometrisches Mittel machen?
Ich steh grade ein bisschen auf der Leitung, weil ich mich mit dem Beispiel einfach schon etwas zu lange beschäftige.

Bezug
                        
Bezug
Polarisationswinkel, Reflexion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Do 10.01.2013
Autor: Event_Horizon

Hallo!

Ich glaube, wir reden ein wenig  aneinander vorbei.

Erstmal steht in der Aufgabe, daß es eine Ebene gibt, in der beide Strahlen liegen. Die Polarisationsebene des zweiten Strahls steht im Winkel von   45° zu dieser Ebene. Das bedeutet: es du kannst den Strahl in eine Komponente senkrecht [mm] E_{s, r} [/mm] und eine parallel zu dieser Ebene [mm] E_{p, r} [/mm] zerlegen. Es gilt dann:

[mm] $\tan\frac{E_{s, r}}{E_{p, r}}=45^\circ \Rightarrow \frac{E_{s, r}}{E_{p, r}}=1 \Rightarrow {E_{s, r}}={E_{p, r}}=A$ [/mm]


Mit Hilfe deiner beiden Reflexionskoeffizienten kannst du die beiden Komponenten vor der Reflextion  berechnen, denn es gilt:


[mm] E_{s, r}=A=r_\parallel*E_{s, 0} [/mm]

[mm] E_{p, r}=A=r_\perp*E_{p, 0} [/mm]

ACHTUNG: die Komponente, die senkrecht auf der Ebene steht, ist die, die an der Glasfläche parallel reflektiert wird, also nicht wundern!

Jetzt kannst du mit der o.g. Formel den Winkel bestimmen. Das A fällt bei der Rechnung raus!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Optik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]