matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenPolarform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Polarform
Polarform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarform: Tipp?
Status: (Frage) beantwortet Status 
Datum: 09:59 So 12.01.2014
Autor: gotoxy86

Aufgabe
Es ist: [mm] \left(i+\sqrt{3}\right)^{32}=\left(2\cos{\br{5\pi}{6}}+2i\sin{\br{5\pi}{6}}\right)^{32}=2^{32}\left(\cos{\br{160\pi}{6}}+i\sin{\br{160\pi}{6}}\right) [/mm]
Damit erhält man: [mm] z=4\left(\cos{\br{2\pi}{3}}+i\sin{\br{2\pi}{3}}\right) [/mm]


[mm] \varphi=\operatorname{atn}\br{-1}{\sqrt{3}}+\pi=\br{5\pi}{6} [/mm] weil [mm] $a=-\sqrt{3}<0 \wedge [/mm] b=1>0$
Dann später: [mm] \br{160\pi}{6}=\br{80\pi}{3}=26\br{2\pi}{3}\equiv\br{2\pi}{3} [/mm]
Aber gilt das immer für cos und sin gleichermassen? Ich frage, weil die coskurve immer um [mm] \br{\pi}{2} [/mm] verschoben ist.

Richtig, oder?

Und wo kommt die 2 bzw. später die 4 her.

        
Bezug
Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 So 12.01.2014
Autor: angela.h.b.


> Es ist:
> [mm]\left(i+\sqrt{3}\right)^{32}=\left(2\cos{\br{5\pi}{6}}+2i\sin{\br{5\pi}{6}}\right)^{32}=2^{32}\left(\cos{\br{160\pi}{6}}+i\sin{\br{160\pi}{6}}\right)[/mm]
>  Damit erhält man:
> [mm]z=4\left(\cos{\br{2\pi}{3}}+i\sin{\br{2\pi}{3}}\right)[/mm]
>  
> [mm]\varphi=\operatorname{atn}\br{-1}{\sqrt{3}}+\pi=\br{5\pi}{6}[/mm]
> weil [mm]a=-\sqrt{3}<0 \wedge b=1>0[/mm]
>  Dann später:
> [mm]\br{160\pi}{6}=\br{80\pi}{3}=26\br{2\pi}{3}\equiv\br{2\pi}{3}[/mm]
>  
> Richtig, oder?
>  
> Aber wo kommt die 2 bzw. später die 4 her.

Hallo,

von welcher der Zweien redest Du?
Es ist | [mm] (\wurzel{3}+i)|=\wurzel{1+3}=2. [/mm]

Die 4 ist falsch.

Falsch ist auch, daß
[mm] \wurzel{3}+i=2\cos{\br{5\pi}{6}}+2i\sin{\br{5\pi}{6}}. [/mm]
Der Winkel stimmt nicht.

Es muß doch sein
[mm] \wurzel{3}=2\cos{\varphi} [/mm] und [mm] 1=2sin{\varphi}. [/mm]

LG Angela


Bezug
                
Bezug
Polarform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 So 12.01.2014
Autor: gotoxy86

[mm] \left(i-\sqrt{3}\right)^{32} [/mm] sollte es heißen. Dann würde der Winkel wieder stimmen?


Ich frage mich, wo die ersten beiden Zweien herkommen.

Und anschließend, wo die 4 herkommt?

Bezug
                        
Bezug
Polarform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 So 12.01.2014
Autor: reverend

Hallo gotoxy86,

welche Zweien? Welche 4?
Kannst Du die mal in Deinem ersten Post markieren, damit man weiß, wovon Du redest?

Wenn Du Antworten willst, musst Du erstmal lernen, präzise Fragen zu stellen.

Grüße
reverend

Bezug
                        
Bezug
Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 So 12.01.2014
Autor: schachuzipus

Hallo,

> [mm]\left(i-\sqrt{3}\right)^{32}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

sollte es heißen. Dann würde

> der Winkel wieder stimmen?

>
>

> Ich frage mich, wo die ersten beiden Zweien herkommen.

Na, das ist der Betrag der Zahl $i-\sqrt 3$


Eine komplexe Zahl $z=a+bi$ kannst du darstellen als $r\cdot{}e^{i\cdot{}\varphi}=r\cdot{}(\cos(\varphi)+i\cdot{}\sin(\varphi)})$, wobei $r=|z|$ und $\varphi=\operatorname{arg}(z)$

>

> Und anschließend, wo die 4 herkommt?

Die scheint mir falsch zu sein! Richtig $2^{32}=...$ keine Ahnung, was das gibt ...

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]