matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenPolardarstellung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Komplexe Zahlen" - Polardarstellung
Polardarstellung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polardarstellung: Polardarstellung, r berechnen
Status: (Frage) beantwortet Status 
Datum: 12:50 Mo 10.11.2014
Autor: kiwipou

Aufgabe
gesucht sind alle Lösungen der Gleichung
[mm] z^6+17=0 [/mm]

Hallo ihr Lieben
ich habe ein problem beim lösen meiner hausaufgabe. gesucht sind alle lösungen der gleichung [mm] z^6+17=0 [/mm]
dazu habe ich die polardarstellung gewählt und für k=0 zum beispiel: z^(1/6)=r^(1/6)*cos(phi/6)+i*sin(Phi/6)
mein problem ist jetzt, das r zu berechnen. ich weiß bereits, dass r= Wurzel aus [mm] z^2 [/mm] gilt bzw r ist der betrag von z. heißt das, dass mein r hier 17 sein muss? oder wurzel 17? das kommt mir seltsam vor.
weiß vielleicht jemand, wie man r berechnet unter der Bedinung r= Betrag von z?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
ich bin dankbar für jede Hilfe
Lg

        
Bezug
Polardarstellung: Durcheinander vermeiden
Status: (Antwort) fertig Status 
Datum: 13:24 Mo 10.11.2014
Autor: Al-Chwarizmi


> gesucht sind alle Lösungen der Gleichung
> [mm]z^6+17=0[/mm]


>  dazu habe ich die polardarstellung gewählt und für k=0
> zum beispiel: z^(1/6)=r^(1/6)*cos(phi/6)+i*sin(Phi/6)
>  mein problem ist jetzt, das r zu berechnen. ich weiß
> bereits, dass r= Wurzel aus [mm]z^2[/mm] gilt bzw r ist der betrag
> von z. heißt das, dass mein r hier 17 sein muss? oder
> wurzel 17? das kommt mir seltsam vor.
>  weiß vielleicht jemand, wie man r berechnet unter der
> Bedinung r= Betrag von z?


Hallo  und    [willkommenmr]

Zuallererst solltest du dich entscheiden, was bei dir
jetzt mit z bezeichnet werden soll. Du verwendest
nämlich das z einerseits für die Lösungsvariable, dann
aber auch für die Zahl, aus welcher hier komplexe
Wurzeln gezogen werden sollen. Ein solches Durch-
einander muss unbedingt vermieden werden !

Die zu lösende Gleichung ist   [mm]z^6+17\ =\ 0[/mm]
was man auch schreiben kann als   [mm]z^6\ =\ -17[/mm]
Nun dürfen wir die rechts stehende Zahl -17 eben
nicht auch wieder mit z bezeichnen, sondern
meinetwegen mit a.

So, nun weißt du wohl:  Wenn  a = [mm] z^6 [/mm] ist, dann muss
$\ |a|\ =\ [mm] |z|^6$ [/mm]  und   $\ arg(a)\ =\ 6*arg(z)$  sein
(letztere Gleichung ist modulo  $\ [mm] 2\,\pi$ [/mm] zu verstehen).

Jetzt zuerst zur Zahl  a = -17 . Welchen Betrag  |a|  und
welchen Argumentwinkel  arg(a) = [mm] \Phi [/mm]  hat diese Zahl ?

Im nächsten Schritt kannst du dich dem Wert (bzw. den
möglichen Werten) von z zuwenden.  Es muss ja nun
eben z.B. gelten:    $\ [mm] |z|^6\ [/mm] =\ |a|$ .

Zunächst mal nur so viel.

LG ,   Al-Chw.  




Bezug
                
Bezug
Polardarstellung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:56 Mo 10.11.2014
Autor: kiwipou

erstmal vielen Dank für die Antwort.
das heißt also, dass [mm] |-17|=|z|^6 [/mm] sein muss und somit: z=17^(1/6)=1,604
nur ich weiß jetzt nicht so recht, wie es weitergeht. Und wie macht man das mit arg(a)=6*arg(z)? das mit dem Argument kenne ich leider gar nicht. Ist das denn nötig, um r berechnen zu können?
Lg

Bezug
                        
Bezug
Polardarstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mo 10.11.2014
Autor: Al-Chwarizmi


> erstmal vielen Dank für die Antwort.
>  das heißt also, dass [mm]|-17|=|z|^6[/mm] sein muss und somit:
> z=17^(1/6)=1,604     [notok]

Stop !   Das ist noch nicht z persönlich, sondern erst mal  |z|  !


>  nur ich weiß jetzt nicht so recht, wie es weitergeht. Und
> wie macht man das mit arg(a)=6*arg(z)? das mit dem Argument
> kenne ich leider gar nicht. Ist das denn nötig, um r
> berechnen zu können?

Den Radius r , also  $\ r\ =\ |z|\ =\ [mm] \sqrt[6]{17}\ \approx\ [/mm] 1.6035$
ist ja schon bekannt !

Jetzt geht es noch um die möglichen Polarwinkel der möglichen
Lösungen [mm] z_k [/mm] . Bezeichnen wir diese Winkel mal mit [mm] \alpha_k [/mm] .
Es muss gelten:

      $\ [mm] 6\,*\,\alpha_k\ [/mm] =\ [mm] \Phi$ [/mm]     (*)

wobei wir [mm] \Phi [/mm] für den Argument- (oder Polar-Winkel) der
Ausgangszahl  a = -17  schreiben.
Wie groß ist dieser Polarwinkel der Zahl  a = -17 , die
in der Gaußschen Ebene auf dem linken (negativen)
Abschnitt der reellen Achse liegt ?

Aus der obigen Gleichung  (*)  kannst du dann leicht
einen ersten möglichen Winkel [mm] \alpha_1 [/mm]  berechnen.
Da man die Gleichung  (*)  aber sinnvollerweise
so schreiben sollte:

      $\ [mm] 6\,*\,\alpha_k\ [/mm] =\ [mm] \Phi\,+\, m*(\,2\,\pi\,)$ [/mm]      mit   [mm] m\in\IZ [/mm]

(ist dir klar, weshalb ?)

gibt es nicht nur den einen schon ermittelten Winkel
[mm] \alpha_1 [/mm] , sondern noch weitere. Wie viele insgesamt ?
Und wie viele davon brauchen wir tatsächlich ?

LG ,   Al-Chwarizmi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]