matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometriePolar- in Kartes. Koordinaten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Topologie und Geometrie" - Polar- in Kartes. Koordinaten
Polar- in Kartes. Koordinaten < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polar- in Kartes. Koordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 29.05.2012
Autor: Circus

Aufgabe
Zeigen Sie, dass die Polardarstellung

[mm] \rho (\phi)= \bruch{k}{1+\epsilon*\cos(\phi)}[/mm]

in den verschobenen Polarkoordinaten

[mm]x=\rho*\cos(\phi)+c[/mm] ; [mm]y=\rho*\sin(\phi)[/mm] (6)

zur Ellipsengleichung in kartesischen Koordinaten

[mm]\bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1[/mm]

führt. (Es gilt: [mm]c^2=a^2+b^2[/mm])

Hinweis:

Schreiben Sie die Ellipsengleichung in der Form

[mm] \rho^2=[k-\epsilon*\rho*\cos(\phi)}]^2[/mm]

und führen Sie auf der linken und auf der rechten Seite die karteischen Koordinaten gemäß der Gleichung (6)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

1) habe die Gleichungen von (6) ein bisschen umgestellt:

[mm]x=\rho*\cos(\phi)+c[/mm] ; [mm]y=\rho*\sin(\phi)[/mm]

=>

[mm]\rho*\cos(\phi)=x-c[/mm] ; [mm]\rho=\bruch {y}{\sin(\phi)}[/mm]

dann in die Gleichung

[mm]\rho^2=[k-\epsilon*\rho*\cos(\phi)}]^2[/mm] eingesetzt:

=>
[mm](\bruch {y}{\sin(\phi)})^2=[k-\epsilon*(x-c)}]^2[/mm]

2) k, [mm] \epsilon [/mm] und c ersetzen

[mm]c^2=a^2+b^2[/mm]
=>
[mm]c=(a^2+b^2)^{0,5}[/mm]

[mm]k=\bruch{b^2}{a}[/mm] (Formelsammlung)

[mm]\epsilon=\bruch{(a^2-b^2)^{0,5}}{a}[/mm] (Formelsammlung)

=>

[mm](\bruch {y}{\sin(\phi)})^2=[\bruch{b^2}{a}-\bruch{(a^2-b^2)^{0,5}}{a}*(x-(a^2+b^2)^{0,5}))}]^2[/mm]



Ab hier komme ich nicht wirklich weiter.

Ich habe zwar noch ein bisschen die Wurzeln ausmulitpliziert und da wo ich konnte zusammengefasst, aber das hat nichts erbracht außer Schreibarbeit - hätte jemand einen Hinweis/Tipp für mich?

Oder ist mein Ansatz schon verkehrt/fehlerhaft.

MfG

Circus



        
Bezug
Polar- in Kartes. Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 30.05.2012
Autor: rainerS

Hallo Circus!

Erstmal herzlich [willkommenvh]

> Zeigen Sie, dass die Polardarstellung
>  
> [mm]\rho (\phi)= \bruch{k}{1+\epsilon*\cos(\phi)}[/mm]
>  
> in den verschobenen Polarkoordinaten
>  
> [mm]x=\rho*\cos(\phi)+c[/mm] ; [mm]y=\rho*\sin(\phi)[/mm] (6)
>  
> zur Ellipsengleichung in kartesischen Koordinaten
>  
> [mm]\bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1[/mm]
>  
> führt. (Es gilt: [mm]c^2=a^2+b^2[/mm])
>  
> Hinweis:
>  
> Schreiben Sie die Ellipsengleichung in der Form
>  
> [mm]\rho^2=[k-\epsilon*\rho*\cos(\phi)}]^2[/mm]
>  
> und führen Sie auf der linken und auf der rechten Seite
> die karteischen Koordinaten gemäß der Gleichung (6)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> 1) habe die Gleichungen von (6) ein bisschen umgestellt:
>  
> [mm]x=\rho*\cos(\phi)+c[/mm] ; [mm]y=\rho*\sin(\phi)[/mm]
>  
> =>
>  
> [mm]\rho*\cos(\phi)=x-c[/mm] ; [mm]\rho=\bruch {y}{\sin(\phi)}[/mm]
>  
> dann in die Gleichung
>
> [mm]\rho^2=[k-\epsilon*\rho*\cos(\phi)}]^2[/mm] eingesetzt:

Ich würde eher [mm] $\rho^2=(x-c)^2+y^2$ [/mm] benutzen.

Viele Grüße
   Rainer

Bezug
        
Bezug
Polar- in Kartes. Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Do 31.05.2012
Autor: chrisno


> Hinweis:
>  
> Schreiben Sie die Ellipsengleichung in der Form
>  
> [mm]\rho^2=[k-\epsilon*\rho*\cos(\phi)}]^2[/mm]

Du solltest diesen Hinweis ernst nehmen, und selbst versuchen, diese Form zu erreichen. Mir gelingt es nicht.
$ [mm] \rho (\phi)= \bruch{k}{1+\epsilon\cdot{}\cos(\phi)} [/mm] $
$ [mm] \rho (\phi) \cdot(1+\epsilon\cdot{}\cos(\phi)) [/mm] = k$
$ [mm] \rho^2 (\phi) \cdot(1+\epsilon\cdot{}\cos(\phi))^2 [/mm] = [mm] k^2$ [/mm]
$ [mm] \rho^2 (\phi) [/mm]  = [mm] k^2- 2\rho^2\epsilon\cdot{}\cos(\phi)+ \rho^2\epsilon^2\cdot{}\cos(\phi)^2$ [/mm]
Das soll das gleiche sein wie:
$ [mm] \rho^2 (\phi) [/mm]  = [mm] k^2- 2\rho\epsilon [/mm] k [mm] \cdot{}\cos(\phi)+ \rho^2\epsilon^2\cdot{}\cos(\phi)^2$ [/mm]
Das geht nur wenn [mm] $\rho \equiv [/mm] k$, was Unsinn ist.
Also, vergiss diesen Hinweis.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]