matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPol n-ter Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Pol n-ter Ordnung
Pol n-ter Ordnung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pol n-ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Di 08.03.2016
Autor: Reynir

Hi,
ich betrachte gerade einen Beweis und da verstehe ich etwas nicht ([]S. 37). Bei Lemma 9.2 i) => ii), da wird gesagt, dass man [mm] $\frac{1}{f(z)}$ [/mm] in eine Potenzreihe entwickeln kann, wie sie dort angegeben ist mit Startindex n. Wenn ich jetzt mit [mm] $g(z)=(z-z_0)^n \frac{1}{f(z)}$ [/mm] starte und wende Riemann an, dann komme ich allerdings nur zu einer Reihe [mm] $\sum_{k\geq n} c_k (z-z_0)^{k-n}=e(z)$, [/mm] die erfüllt, dass [mm] $g(z)=(z-z_0)^n [/mm] e(z)$ und wenn ich Riemann richtig verstanden habe [mm] $e(z)=\frac{1}{f}$. [/mm]
Ich nehme mal an, ich hätte eher [mm] $(z-z_0)^n [/mm] f(z)$ betrachten müssen, oder? (soll das dann beschränkt sein oder fordert man für [mm] $z\rightarrow z_0$ [/mm] =0, wie ist das hier gemeint:[]S. 18 unter Kapitel 4.1 )
Viele Grüße,
Reynir

        
Bezug
Pol n-ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mi 09.03.2016
Autor: fred97


> Hi,
>  ich betrachte gerade einen Beweis und da verstehe ich
> etwas nicht
> ([]S. 37).
> Bei Lemma 9.2 i) => ii), da wird gesagt, dass man
> [mm]\frac{1}{f(z)}[/mm] in eine Potenzreihe entwickeln kann, wie sie
> dort angegeben ist mit Startindex n. Wenn ich jetzt mit
> [mm]g(z)=(z-z_0)^n \frac{1}{f(z)}[/mm] starte und wende Riemann an,
> dann komme ich allerdings nur zu einer Reihe [mm]\sum_{k\geq n} c_k (z-z_0)^{k-n}=e(z)[/mm],
> die erfüllt, dass [mm]g(z)=(z-z_0)^n e(z)[/mm] und wenn ich Riemann
> richtig verstanden habe [mm]e(z)=\frac{1}{f}[/mm].
>  Ich nehme mal an, ich hätte eher [mm](z-z_0)^n f(z)[/mm]
> betrachten müssen, oder?


Nein. f hat in [mm] z_0 [/mm] einen Pol bedeutet, zunächst in Worten:

   $|f(z)|$ wird beliebig groß, wenn z hinreichend nahe bei [mm] z_0 [/mm] liegt"

Das bedeutet u.a.:

1. es ex. ein r>0 mit: [mm] $U:=\{w \in \IC: 0<|w-z_0|
und

2. [mm] \bruch{1}{f(z)} \to [/mm] 0 für z [mm] \to z_0. [/mm]


Aus 1. folgt: die Funktion 1/f ist auf U holomorph.

Aus 2. folgt: 1/f ist "in der Nähe" von [mm] z_0 [/mm] beschränkt.

Mit dem Riemannschen Hebbarkeitssatz bekommen wir:

  1/f lässt sich holomorph fortsetzen auf [mm] K:=\{w \in \IC: |w-z_0|
Diese holomorphe Fortsetzung nenne ich [mm] \phi. [/mm] Die [mm] \phi [/mm] stetig ist, ergibt sich aus 2. :

    [mm] \phi(z_0)=0. [/mm]

Ist n die Ordnung der Nullstelle [mm] z_0 [/mm] von [mm] \phi, [/mm] so gibt es eine auf K holomorphe Funktion [mm] \psi [/mm] mit:

    [mm] \phi(z)=(z-z_0)^n\psi(z) [/mm]  für alle $z [mm] \in [/mm] K$ und [mm] \psi(z_0) \ne [/mm] 0.

FRED


> (soll das dann beschränkt sein
> oder fordert man für [mm]z\rightarrow z_0[/mm] =0, wie ist das hier
> gemeint:[]S. 18 unter Kapitel 4.1
> )
> Viele Grüße,
>  Reynir


Bezug
                
Bezug
Pol n-ter Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Mi 09.03.2016
Autor: Reynir

Danke für deine Hilfe.
Viele Grüße,
Reynir

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]