matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheoriePoissonverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Poissonverteilung
Poissonverteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poissonverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 24.10.2018
Autor: questionpeter

Aufgabe
Aus dem matürlichen Zahlen wird eine zufällige Teilmenge A ausgewählt, deren Größe Poissonverteilt ist [mm] (\lambda [/mm] >0). Bestimmen Sie die erwartende Anzahl an k-elementige Teilmenge von A für [mm] k\ge [/mm] 0.

Hallo,

muss man da den Erwartungswert berechnen, d.h.

[mm] E(X)=\sum_{k\ge 0}P(X=k)x=\lambda? [/mm]

Könnt ihr mir einen Tipp geben?

        
Bezug
Poissonverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Mi 24.10.2018
Autor: Gonozal_IX

Hiho,

ich formuliere die Frage mal anders:

Als erstes wird eine zufällige Menge A gewählt, deren Größe Poisson-verteilt ist.
Nun sollst du bestimmen, wie viele k-elementige Teilmengen es gibt (zu erwarten sind) für $k>0$.

Als Beispiel: Wir tun jetzt mal so, als hätten wir die Menge $A = [mm] \{1,2,5,6,7\}$ [/mm] bekommen.

Dann gibt es exakt folgende Teilmengen für
k=1: 5 Stück, nämlich [mm] $\{1\},\{2\},\{5\},\{6\},\{7\}$ [/mm]
k=2: [mm] \vektor{5 \\ 2} [/mm] = 10 2-elementige Teilmengen
k=3: 10 3-elementige Teilmengen
k=4 : 5 4-elementige Teilmengen
k=5: eine 5-elementige Teilmenge
k>0: 0 k-elementige Teilmengen

Besseres Verständnis nun?

Gruß,
Gono

Bezug
                
Bezug
Poissonverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 24.10.2018
Autor: questionpeter

Hallo,

vielen Dank für deine Erklärung. Soweit ich es verstanden habe wäre es dann
[mm] \vert A\vert [/mm] <k, dann haben wir 0 k-elementige Teilmenge

Falls [mm] \vert A\vert \ge [/mm] k, dann bekommt man [mm] \vektor{\vert A\vert \\ k} [/mm] k-elementige Teilmengen

Sei [mm] \vert A\vert=m [/mm] mit [mm] m\ge [/mm] k, dann ist also

[mm] E(A)=\sum_{k=0}^m\vektor{m \\ k}\bruch{\lambda^k}{k!}e^{-\lambda} [/mm]

Stimmt das soweit? vielen Dank!

Bezug
                        
Bezug
Poissonverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Do 25.10.2018
Autor: Gonozal_IX

Hiho,

>  [mm]\vert A\vert[/mm] <k, dann haben wir 0 k-elementige Teilmenge

[ok]
  

> Falls [mm]\vert A\vert \ge[/mm] k, dann bekommt man [mm]\vektor{\vert A\vert \\ k}[/mm]
> k-elementige Teilmengen

[ok]
  

> Sei [mm]\vert A\vert=m[/mm] mit [mm]m\ge[/mm] k, dann ist also
>  
> [mm]E(A)=\sum_{k=0}^m\vektor{m \\ k}\bruch{\lambda^k}{k!}e^{-\lambda}[/mm]

das stimmt nicht.
Erstmal: A ist ja eine Menge, da kannst du keinen Erwartungswert von nehmen, da wissen wir nämlich nichts drüber.
Was wir aber wissen, ist, dass |A| poissonverteilt ist zum Parameter [mm] $\lambda$, [/mm] damit gilt also $E[|A|] = [mm] \lambda$, [/mm] das bringt dir aber nix.

Was wir aber auch wissen, ist: $P[|A| = k] = [mm] {\frac {\lambda ^{k}}{k!}}\,{\mathrm {e}}^{{-\lambda }}$ [/mm]

Wir haben bereits, dass  [mm]\vektor{\vert A\vert \\ k}[/mm] die Anzahl an $k$-elementigen Teilmengen ist zu gegebenem |A|. Wir wollen nun aber die erwartete Anzahl haben… also gilt es

[mm] $E\left[ \vektor{\vert A\vert \\ k} \right]$ [/mm]

zu berechnen.
Na dann mal los!

Gruß,
Gono



Bezug
                                
Bezug
Poissonverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Do 25.10.2018
Autor: questionpeter

D.h. k ist fest und für jede Menge A mit [mm] \vert A\vert \ge [/mm] k erhalte ich  [mm] \vektor{\vert A\vert\\ k} [/mm] k-elementige Teilmengen. Also

[mm] E\left[ \vektor{\vert A\vert \\ k} \right] =\sum_{m\ge k}\vektor{m \\ k}P(\vert A\vert=m)=\sum_{m\ge k}\vektor{m \\ k}\bruch{\lambda^m}{m!}e^{-\lambda} [/mm]

Stimmt das? Wenn ja, kann ich die Summe weiterzusammenfassen oder wäre das schon die Lösung? (ich könnte höchsten [mm] e^{-\lambda} [/mm] vor der Summe ziehen, aber weiterbringen tut es mir nicht)

Bezug
                                        
Bezug
Poissonverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Do 25.10.2018
Autor: Gonozal_IX

Hiho,

> [mm]E\left[ \vektor{\vert A\vert \\ k} \right] =\sum_{m\ge k}\vektor{m \\ k}P(\vert A\vert=m)=\sum_{m\ge k}\vektor{m \\ k}\bruch{\lambda^m}{m!}e^{-\lambda}[/mm]

[ok]  

> Stimmt das? Wenn ja, kann ich die Summe
> weiterzusammenfassen oder wäre das schon die Lösung?

Na was hast du denn versucht?
Wie wäre es mit: Kürzen, alles aus der Summe ziehen, was nicht vom Laufindex abhängt, Indexverschiebung…

Gruß,
Gono

Bezug
                                                
Bezug
Poissonverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:55 Do 25.10.2018
Autor: questionpeter

ich habe nun folgendes erhalten

[mm] E\left[ \vektor{\vert A\vert \\ k} \right] =\sum_{m\ge k}\vektor{m \\ k}P(\vert A\vert=m)=\sum_{m\ge k}\vektor{m \\ k}\bruch{\lambda^m}{m!}e^{-\lambda} =e^{-\lambda}\sum_{m\ge k}\vektor{m \\ k}\bruch{\lambda^m}{m!} =e^{-\lambda}\sum_{m-k\ge 0}\vektor{m-k \\ k}\bruch{\lambda^{m-k}}{(m-k)!}=e^{-\lambda}\sum_{m-k\ge 0}\bruch{(m-k)!}{(m-2k)!}\bruch{\lambda^{m-k}}{(m-k)!}=e^{-\lambda}\sum_{m-k\ge 0}\bruch{\lambda^{m-k}}{(m-2k)!} [/mm]

Wäre es damit fertig?

Bezug
                                                        
Bezug
Poissonverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 Do 25.10.2018
Autor: fred97


> ich habe nun folgendes erhalten
>  
> [mm]E\left[ \vektor{\vert A\vert \\ k} \right] =\sum_{m\ge k}\vektor{m \\ k}P(\vert A\vert=m)=\sum_{m\ge k}\vektor{m \\ k}\bruch{\lambda^m}{m!}e^{-\lambda} =e^{-\lambda}\sum_{m\ge k}\vektor{m \\ k}\bruch{\lambda^m}{m!} =e^{-\lambda}\sum_{m-k\ge 0}\vektor{m-k \\ k}\bruch{\lambda^{m-k}}{(m-k)!}=e^{-\lambda}\sum_{m-k\ge 0}\bruch{(m-k)!}{(m-2k)!}\bruch{\lambda^{m-k}}{(m-k)!}=e^{-\lambda}\sum_{m-k\ge 0}\bruch{\lambda^{m-k}}{(m-2k)!}[/mm]
>  
> Wäre es damit fertig?

nein, weil es nicht stimmt. Deinen Umformungen kann ich nicht folgen !

Es ist

[mm] $\vektor{m \\ k} \frac{\lambda^m}{m!}=\frac{\lambda^k}{k!}\frac{\lambda^{m-k}}{(m-k)!}$ [/mm]

Also

[mm] $\sum_{m\ge k}\vektor{m \\ k} \frac{\lambda^m}{m!}= \frac{\lambda^k}{k!} \sum_{m\ge k}\frac{\lambda^{m-k}}{(m-k)!}=\frac{\lambda^k}{k!} e^{\lambda}$ [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]