matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPoissonscher Grenzwertsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Poissonscher Grenzwertsatz
Poissonscher Grenzwertsatz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poissonscher Grenzwertsatz: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 00:45 Fr 18.11.2005
Autor: djmatey

Hallo,

in meinem WT-Buch stehen die Voraussetzungen für den Poissonschen Grenzwertsatz folgendermaßen:
Es gelte [mm] P^{X_{n}}=\mathcal{B}(n,p_{n}) [/mm] mit [mm] p_{n}=\bruch{a}{n}+o(\bruch{1}{n}),a>0, [/mm] und ...

Meine Frage ist nun, was dass [mm] o(\bruch{1}{n}) [/mm] bedeutet. Ich glaube ja, dass es zumindest schonmal irgendetwas mit einer Nullfolge zu tun hat, weiß aber nicht genau was und was es genau mit dem [mm] \bruch{1}{n} [/mm] auf sich hat.

Ich wäre über eine Antwort sehr dankbar.
Schöne Grüße.

        
Bezug
Poissonscher Grenzwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Fr 18.11.2005
Autor: Astrid

Hallo,

in welchem WT-Buch steht das denn?
Und wo da? [edit: Klar, beim Poisson'schen GWS...]

Ich kenne diese Notation nur als Klein-o-Notation, also als Landau-Symbol. Dabei bedeutet
[mm] $f_n=o(g_n)$, [/mm] dass  [mm] \limes_{n\rightarrow\infty} \bruch{f_n}{g_n} [/mm] = 0$,

siehe auch []hier.

Viele Grüße
Astrid


Bezug
                
Bezug
Poissonscher Grenzwertsatz: Buch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:01 Sa 19.11.2005
Autor: djmatey

Danke schön, das war's, was ich gesucht habe!
Es geht um das Buch "Vorlesungen über Wahrscheinlichkeitstheorie" von Norbert Schmitz, S.229 (Kapitel über Verteilungskonvergenz).
Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]