matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPoisson Prozess
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Poisson Prozess
Poisson Prozess < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson Prozess: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:08 So 13.01.2013
Autor: EGF

Aufgabe
Aufgabe 2: Bei einer Telefon-Hotline rufen ab 8:00 Uhr Frauen und Männer an, insgesamt im Durchschnitt 10 Anrufe pro Stunde, davon 30% von Männern.
(a) Geben Sie ein geeignetes Modell an für die Zeitpunkte der Anrufe. Unter welchen Annahmen ist dieses Modell gerechtfertigt?
(b) Mit welcher Wahrscheinlichkeit kommen die ersten drei Anrufe in Abständen von weniger als 5 Minuten?
(c) Mit welcher Wahrscheinlichkeit haben schon mindestens 3 Frauen angerufen, bevorder erste Mann anruft?
(d) Wie lange dauert es im Durchschnitt bis der erste Mann anruft?

Hallo :D
Ok Stochastik ist dem Anschein nach absolut nicht meins.
Ich habe hier noch eine Aufgabe an der ich langsam verzweifel.


Aufgabe a) habe ich soweit:
Wir gehen von einem Possion Prozess aus (Treffer zu zufälligen Zeitpunkten in stetiger Zeit). Hierfür müssen wir annehmen, dass die Anrufe in konstanter Rate kommen und die Anrufe unabhängig voneinander sind.  Unter diesen Annahmen liegt ein Possionprozess mit Parameter alpha= 10 vor.

Wobei ich mir mit alpha schon gar nicht mehr so sicher bin. Aber laut meiner Quelle ist das ja die Trefferanzahl in einem Zeitintervall.

bei b habe ich folgende Überlegung aufgestellt/abgeschrieben:

[mm] P(T1≥\bruch{1}{10},T2≥\bruch{1}{10},T3≥\bruch{1}{10})=P(T1≥\bruch{1}{10}) [/mm]  P( [mm] T2≥\bruch{1}{10}) P(T3≥\bruch{1}{10})=( \integral_{1/10}^{\infty}{10e^{-10dt}})^3 [/mm]  durch umformung dann [mm] e^{-3} \approx [/mm] 5%

Kann mir bitte jmd sagen, ob das korrekt ist?

Bei c und d fehlen mir die Ansätze...

lg und danke im voraus, EGF



        
Bezug
Poisson Prozess: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Di 15.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]