matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationPoisson Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Fourier-Transformation" - Poisson Formel
Poisson Formel < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson Formel: Aufgabenteil
Status: (Frage) beantwortet Status 
Datum: 16:54 Sa 18.07.2009
Autor: Deuterinomium

Aufgabe
Ich muss bei einer Aufgabe folgende Gleichung lösen:

[mm] $2\sum_{l\in\mathbb{Z}}f(2l)=\sum_{k\in\mathbb{Z}}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}$ [/mm]

für die Funktion [mm] $f:=1_{\left[-\frac{1}{2},\frac{1}{2}\right]}\ast 1_{\left[-\frac{1}{2},\frac{1}{2}\right]}=(1+|x|)_+$ [/mm]

Hallo zusammen!

Wie gesagt muss ich obige Gleichung lösen und bin dabei etwas unsicher. Folgendes habe ich gemacht:

[mm] $2\sum_{l\in\mathbb{Z}}f(2l)=\sum_{k\in\mathbb{Z}}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}$ [/mm]
[mm] \Longleftrightarrow$2=\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}\Bigr|_0+2\sum_{k=1}^{\infty}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}$ [/mm]

Für den "Nuller Term hab ich dann zweimal l'Hospital angewendet.
Dabei kam dann raus:
[mm] $\lim\limits_{k\rightarrow 0}\frac{\sin^2\left(\frac{k\pi}{2}\right)}{\left(\frac{k\pi}{2}\right)^2}=1$ [/mm]

Darf ich das so machen? Und kann mir jemand erklären wie man auf den zweiten Ausdruck für $f$ kommt. Irgendwie bekomm ich das nicht raus mit der Faltung!

Danke!

Gruß
Deuterinomium

        
Bezug
Poisson Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:51 Mo 20.07.2009
Autor: Leopold_Gast

L'Hospital ist überflüssig, aber natürlich möglich. Aus dem bekannten

[mm]\lim_{t \to 0} \frac{\sin t}{t} = 1[/mm]

folgt wegen der Stetigkeit der Quadratfunktion sofort

[mm]\lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 = 1[/mm]

Und mit der Substitution [mm]t = \frac{\pi}{2} s[/mm] erhältst du, weil mit [mm]s \to 0[/mm] auch [mm]t \to 0[/mm] gilt:

[mm]\lim_{s \to 0} \left( \frac{\sin \left( \frac{\pi}{2} s \right)}{ \frac{\pi}{2} s } \right)^2 = 1[/mm]

Wenn du also in der Summe [mm]\sum_{k \in \mathbb{Z}}[/mm] den Term für [mm]k=0[/mm] durch die stetige Ergänzung der Funktion ersetzen sollst (ich kenne den Zusammenhang der Aufgabe nicht, vermute aber aus deinen Ausführungen, daß das so ist), dann ist 1 der korrekte Wert. Für alle anderen geraden [mm]k[/mm] verschwindet der Summand, und bei den verbleibenden ungeraden [mm]k[/mm] ändert sich der Summand bei einem Vorzeichenwechsel nicht. Daher gilt:

[mm]\sum_{k \in \mathbb{Z}} \frac{\sin^2 \left( \frac{\pi}{2} k \right)}{\left( \frac{\pi}{2} k \right)^2} = 1 + \frac{8}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}[/mm]

Jetzt gilt ja (ich hoffe, das darfst du verwenden):

[mm]\text{(1)} \ \ \ \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots = \frac{\pi^2}{6}[/mm]

Betrachtet man nur die Summanden mit geradem Nenner, so gilt

[mm]\text{(2)} \ \ \ \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \ldots = \frac{1}{4} \left( \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \right) = \frac{1}{4} \cdot \frac{\pi^2}{6} = \frac{\pi^2}{24}[/mm]

Und die Subtraktion von [mm]\text{(1)}[/mm] und [mm]\text{(2)}[/mm] zeigt:

[mm]\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \ldots = \frac{\pi^2}{8}[/mm]

Und was deine Funktion [mm]f[/mm] angeht, müßte das nicht

[mm]f(x) = 1 - |x|[/mm] für [mm]|x| \leq 1[/mm], und [mm]= 0[/mm] sonst

heißen? Dann hat ja die Summe über [mm]l \in \mathbb{Z}[/mm] nur einen nichtverschwindenden Summanden, nämlich den für [mm]l=0[/mm].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]