matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPoisson-Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Poisson-Verteilung
Poisson-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung: berechnen
Status: (Frage) beantwortet Status 
Datum: 13:30 So 03.06.2012
Autor: bandchef

Aufgabe
Die Zufallsgröße X = Anzahl der in einem bestimmten Zeitintervall in einer Telefonzentrale eintreffenden
Anrufe (=Signale) sei Poissonverteilt. Die Zentrale erhält im Mittel 180 Anrufe in der Stunde.
Wie groß ist die Wahrscheinlichkeit, dass innerhalb einer Minute mehr als 6 Anrufe eintreffen?

Ich hab das mal so formuliert:

$P(X [mm] \geq [/mm] 6) = 1 - P(X < 6) = [mm] \sum_{k=0}^{5} \left( 1 - P(k)\right) [/mm] = [mm] \sum_{k=0}^{5} \left( 1 - \frac{\lambda^k}{k!} \cdot e^{-\lambda} \right)$ [/mm]

Ich hab jetzt aber irgendwie das Problem, dass ich nicht weiß was der Parameter [mm] \lambda [/mm] (Erwartungswert) sein soll...

        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 So 03.06.2012
Autor: ullim

Hi,

> Die Zufallsgröße X = Anzahl der in einem bestimmten
> Zeitintervall in einer Telefonzentrale eintreffenden
>  Anrufe (=Signale) sei Poissonverteilt. Die Zentrale
> erhält im Mittel 180 Anrufe in der Stunde.
>  Wie groß ist die Wahrscheinlichkeit, dass innerhalb einer
> Minute mehr als 6 Anrufe eintreffen?
>  Ich hab das mal so formuliert:
>  
> P(X [mm] \geq [/mm] 6) = 1 - P(X < 6) = [mm] \sum_{k=0}^{5} \left( 1 - P(k)\right) [/mm] = [mm] \sum_{k=0}^{5} \left( 1 - \frac{\lambda^k}{k!} \cdot e^{-\lambda} \right) [/mm]
>

Da nach mehr als 6 Anrufen gefragt ist muss es heissen

[mm] P(X>6)=1-P(X\le 6)=1-\sum_{k=0}^{6} \bruch {\lambda^k}{k!} \cdot e^{-\lambda} [/mm]

> Ich hab jetzt aber irgendwie das Problem, dass ich nicht
> weiß was der Parameter [mm]\lambda[/mm] (Erwartungswert) sein
> soll...

Da 180 Anrufe pro Stunde eintreffen, treffen 3 pro Minute ein. Damit ist [mm] \lambda=3 [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]