matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikPlattenkodenstor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "HochschulPhysik" - Plattenkodenstor
Plattenkodenstor < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Plattenkodenstor: Lösungs ansatz
Status: (Frage) beantwortet Status 
Datum: 23:29 Mi 23.07.2008
Autor: M4rc

Aufgabe
Ein Plattenkondensator werde auf zwei verschiedene Weisen zur Hälfte mit Wachs gefüllt (εr=2): Zum einen durch eine Wachsplatte, die die Kondensatorplatten vollständig bedeckt, deren Dicke aber nur dem halben Plattenabstand entspricht (a), zum anderen mit einer Platte, deren Dicke gleich dem Plattenabstand ist, die aber nur die halbe Fläche der Kondensatorplatten bedeckt (b). Man bestimme das Verhältnis der Kapazitäten Ca/Co bzw Cb/Co, wenn Co die Kapazität ohne Wachs ist.

(Ca/Co=4/3 und Cb/Co=3/2)

Moin,

wir haben bei dieser Aufgabe versucht über diese Formel auf die Verhältnisse zu kommen   C=(er * e0 * A)/ d

einmal für den Kondensator der auf beiden Platten eine Wachsschicht hat mit c=(2 * e0 * a)/0,5 aber so kommt man nicht auf das richtige verhältnis

und für die Variante mit oben Wachs und unten nicht, haben wir c1+c1=(2* e0 * A)/ 1 + (1 * e0 * A)/ 1

aber das führt auch nicht zum richtigen Ergebnis!

THX

        
Bezug
Plattenkodenstor: Antwort
Status: (Antwort) fertig Status 
Datum: 00:00 Do 24.07.2008
Autor: rainerS

Hallo!

Bitte nimm doch den Formeleditor, dann kann man leichter lesen, was du schreibst.

> Ein Plattenkondensator werde auf zwei verschiedene Weisen
> zur Hälfte mit Wachs gefüllt (εr=2): Zum einen durch
> eine Wachsplatte, die die Kondensatorplatten vollständig
> bedeckt, deren Dicke aber nur dem halben Plattenabstand
> entspricht (a), zum anderen mit einer Platte, deren Dicke
> gleich dem Plattenabstand ist, die aber nur die halbe
> Fläche der Kondensatorplatten bedeckt (b). Man bestimme das
> Verhältnis der Kapazitäten Ca/Co bzw Cb/Co, wenn Co die
> Kapazität ohne Wachs ist.
>  
> (Ca/Co=4/3 und Cb/Co=3/2)

>

> Moin,
>  
> wir haben bei dieser Aufgabe versucht über diese Formel auf
> die Verhältnisse zu kommen   C=(er * e0 * A)/ d

Das ist der richtige Ansatz.

> einmal für den Kondensator der auf beiden Platten eine
> Wachsschicht hat mit c=(2 * e0 * a)/0,5 aber so kommt man
> nicht auf das richtige verhältnis

Das stimmt ja nicht, denn die Wachsplatte hat zwar die halbe Dicke, aber so berechnet ihr einen Kondensator mit Abstand d/2, der vollständig mit Wachs gefüllt ist. Ihr berücksichtigt nicht die andere Hälfte des Kondensatorvolumens zwischen den Platten.

Man kann das auffassen als Reihenschaltung zweier Kondensatoren mit Plattenabstand $d/2$, der eine mit Wachs gefüllt, der andere nicht. Die Kapazität des zweiten ist wegen des halben Abstandes [mm] $2C_0$, [/mm] die des ersten wegen der Wachsfüllung doppelt so groß, also [mm] $4C_0$. [/mm] Bei Reihenschaltung gilt:

[mm] \bruch{1}{C_a} = \bruch{1}{4C_0} + \bruch{1}{2C_0} \gdw C_a = \bruch{4}{3} C_0 [/mm].

>  
> und für die Variante mit oben Wachs und unten nicht, haben
> wir c1+c1=(2* e0 * A)/ 1 + (1 * e0 * A)/ 1

Das Wachs bedeckt doch nur die halbe Fläche, also

[mm] \bruch{2\varepsilon_0 *(A/2)} {d} + \bruch{1\varepsilon_0 *(A/2)}{d} = \bruch{3}{2} \bruch{\varepsilon_0 A}{d} [/mm].

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]