matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPivotisieren/Simplexalgorith.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Pivotisieren/Simplexalgorith.
Pivotisieren/Simplexalgorith. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pivotisieren/Simplexalgorith.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:44 Fr 03.07.2009
Autor: Owen

Aufgabe
Bestimmen Sie rechnerisch mit Hilfe des Simplexalgorithmus das Maximum der Zielfunktion [mm] Z(x_{1},x_{2})=x_{1}+2*x_{2} [/mm] unter den Nebenbedingungen [mm] x_{1}\ge0,x_{2}\ge0 [/mm] und

[mm] x_{1}+2*x_{2}\le9 [/mm]

[mm] x_{1}+x_{2}\le5 [/mm]

[mm] x_{2}\le3 [/mm]

[mm] x_{1}\le4 [/mm]

Hallo Leute, ich habe eine eher allgemeine Frage. Beim Simplexalgorithmus verwendet man ja das Pivotisierungsverfahren. Hier ist mein Anfangstableau:
[mm] \pmat{ 1 & 2 & 1 & 0 & 0 & 0 | 9 \\ 1 & 1 & 0 & 1 & 0 & 0 | 5 \\ 0 & 1 & 0 & 0 & 1 & 0 | 3 \\ 1 & 0 & 0 & 0 & 0 & 1 | 4 \\ - & - & - & - & - & - & - \\ -1 & -2 & 0 & 0 & 0 & 0 | 0} [/mm]

So, nun wähle ich in [mm] a_{32} [/mm] mein Pivoelement (1). Ich muss also mittels Zeilenoperationen in den restlichen Zeilen (Zeilen 1,2,5) eine 0 erzeugen.  Ich habe mich bei der Erzeugung der Nullen in den Zeilen 1 und 2 bei den Zeilenoperationen auf die Pivozeile bezogen. Ich habe nämlich folgendes gerechnet: [mm] Z_{1}\to Z_{1}-2*Z_{3} [/mm] ; [mm] Z_{2}\to Z_{2}-Z_{3}. [/mm] Diese Zeilenumformungen waren dann vom Ergebnis her auch richtig. Bei der Zielfunktionszeile jedoch habe ich mich nicht! auf die Pivozeile bei den Zeilenoperationen bezogen. ZFZ [mm] \to ZFZ+Z_{1}. [/mm] Die daraus entstandene Zielfunktionszeile war [mm] \pmat{ 0 & 0 & 1 & 0 & 0 & 0 | 9}, [/mm] und dies war falsch. Es hätte richtigerweise  [mm] \pmat{ -1 & 0 & 0 & 0 & 2 & 0 | 6} [/mm] heißen müssen. Ich habe dann nach den Gründen für mein falsches Ergebnis gefragt und bekam als Antwort, dass ich mich hätte auch hier bei den Zeilenoperationen auf meine Pivozeile beziehen müssen. Nun zu meiner Frage: Muss ich mich bei allen Operationen zur Erzeugung von Nullen immer auf die Pivozeile auf irgendeine Weise beziehen? Und ist das nur beim Simplexalgorithmus so oder ist das bei Pivotisierungsverfahren generell immer so? Angenommen ich wende das Pivotisierungsverfahren zur Bestimmung des Rangs einer Matrix an. Muss ich mich auch hier bei den Zeilenumformungen immer auf meine Pivozeile beziehen?


        
Bezug
Pivotisieren/Simplexalgorith.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Sa 04.07.2009
Autor: Disap

Hallo!

> Bestimmen Sie rechnerisch mit Hilfe des Simplexalgorithmus
> das Maximum der Zielfunktion [mm]Z(x_{1},x_{2})=x_{1}+2*x_{2}[/mm]
> unter den Nebenbedingungen [mm]x_{1}\ge0,x_{2}\ge0[/mm] und
>  
> [mm]x_{1}+2*x_{2}\le9[/mm]
>  
> [mm]x_{1}+x_{2}\le5[/mm]
>  
> [mm]x_{2}\le3[/mm]
>  
> [mm]x_{1}\le4[/mm]
>  Hallo Leute, ich habe eine eher allgemeine Frage. Beim
> Simplexalgorithmus verwendet man ja das
> Pivotisierungsverfahren. Hier ist mein Anfangstableau:
>  [mm]\pmat{ 1 & 2 & 1 & 0 & 0 & 0 | 9 \\ 1 & 1 & 0 & 1 & 0 & 0 | 5 \\ 0 & 1 & 0 & 0 & 1 & 0 | 3 \\ 1 & 0 & 0 & 0 & 0 & 1 | 4 \\ - & - & - & - & - & - & - \\ -1 & -2 & 0 & 0 & 0 & 0 | 0}[/mm]

Hier wäre es interessant zu wissen, welche Basis du überhaupt gewählt hast.

> So, nun wähle ich in [mm]a_{32}[/mm] mein Pivoelement (1). Ich muss
> also mittels Zeilenoperationen in den restlichen Zeilen
> (Zeilen 1,2,5) eine 0 erzeugen.  Ich habe mich bei der
> Erzeugung der Nullen in den Zeilen 1 und 2 bei den
> Zeilenoperationen auf die Pivozeile bezogen. Ich habe
> nämlich folgendes gerechnet: [mm]Z_{1}\to Z_{1}-2*Z_{3}[/mm] ;
> [mm]Z_{2}\to Z_{2}-Z_{3}.[/mm] Diese Zeilenumformungen waren dann
> vom Ergebnis her auch richtig. Bei der Zielfunktionszeile
> jedoch habe ich mich nicht! auf die Pivozeile bei den
> Zeilenoperationen bezogen. ZFZ [mm]\to ZFZ+Z_{1}.[/mm] Die daraus
> entstandene Zielfunktionszeile war [mm]\pmat{ 0 & 0 & 1 & 0 & 0 & 0 | 9},[/mm]
> und dies war falsch. Es hätte richtigerweise  [mm]\pmat{ -1 & 0 & 0 & 0 & 2 & 0 | 6}[/mm]
> heißen müssen. Ich habe dann nach den Gründen für mein
> falsches Ergebnis gefragt und bekam als Antwort, dass ich
> mich hätte auch hier bei den Zeilenoperationen auf meine
> Pivozeile beziehen müssen.

Richtig.

> Nun zu meiner Frage: Muss ich
> mich bei allen Operationen zur Erzeugung von Nullen immer
> auf die Pivozeile auf irgendeine Weise beziehen?

Sehr lobenswert von dir, dass du $ZFZ [mm] \to ZFZ+Z_{1}$ [/mm] aufgeschrieben hast, sonst hätte ich nicht verstanden, was du willst.

Jedenfalls funktioniert das so wirklich nicht, denn die Zielfunktionszeile berechnet sich bei jedem (neuen) Simplextableau neu, aus den Pivotzeilen.

Das heisst:
Man wählt das Pivotelement, so wie du das gemacht hast; verändert dann die Pivotzeile so, dass überall sonst nur Nullen stehen (war alles richtig, wie du das beschrieben hast); und währenddessen geschieht mit der Zielfunktionszeile aber nichts! Und auch mit dem Zielfunktionswert nicht; aber die rechte Seite hat sich bereits verändert, also die  Spalte 9,5,3,4.

Das bezeichne ich als neues Simplextableau, bei dem du jetzt nur noch die Zielfunktionszeile und Zielfunktionswert berechnen musst. Aber die berechnet sich ja bekanntlich anders (also dort darf man keine Zeile dazuaddieren)

> Und ist
> das nur beim Simplexalgorithmus so oder ist das bei
> Pivotisierungsverfahren generell immer so? Angenommen ich
> wende das Pivotisierungsverfahren zur Bestimmung des Rangs

Pivotisierungsverfahren? Was meinst du damit? Ich verstehe darunter die Strategie, wie man das Pivot auswählen soll (Auswahlregel von Bland z. B. ) aber das meinst du höchstwahrscheinlich nicht.

> einer Matrix an. Muss ich mich auch hier bei den
> Zeilenumformungen immer auf meine Pivozeile beziehen?

Da man da denselben Algorithmus verwendet, würde ich sagen, dein Vorgehen ist generell falsch, auch in diesem Fall.

  
MfG
Disap

Bezug
        
Bezug
Pivotisieren/Simplexalgorith.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 05.07.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]