matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPicard Iteration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Picard Iteration
Picard Iteration < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard Iteration: "Tipp"
Status: (Frage) überfällig Status 
Datum: 13:51 Mi 06.07.2016
Autor: Ardbeg

Aufgabe
Das Lösen eines DGL-Systems mit Hilfe der Iteration u [mm] \mapsto [/mm] Tu bezeichent man als Picard-Iteration.
Betrachten Sie das Anfangswertproblem:
u'(t)=u(t)*cos(t)
u(0)=1

i) Bestimmen Sie ein möglichst großes Intervall [0, b], auf dem die Konvergenz des Verfahrens garantiert ist.

ii) Bestimmen Sie per Picard-Iteration eine Lösung u(t) des Anfangswertproblems und
geben Sie einen größtmöglichen Definitionsbereich D [mm] \subseteq \IR_{\ge 0} [/mm] an, auf dem u(t) das Anfangswertproblem löst.

Hallo!

Hier mal mein Lösungsansatz:

Sei f: [0;b] x [1-r;1+r] [mm] \to \IR [/mm] f(t,u(t))=u(t)*cos(t) mit r>0. Dann ist f als Komposition stetiger Funktion stetig. Außerdem gilt:

[mm] |f(t;u(t)-f(t;w(t))|=|u(t)cos(t)-w(t)cos(t)|=|cos(t)|*|u(t)-w(t)|\le1*|u(t)-w(t)| [/mm]
[mm] \forall t\in[0;b]; \forall u(t),w(t)\in[1-r;1+r] [/mm]

[mm] \Rightarrow [/mm] l-stetig bezüglich L-Konstante L=1.

Nach Satz von Picard-Lindelöf (lokal) exisitert also eine eindeutige Lösung des AWP aud dem Intervall [mm] [\alpha;a+\alpha] [/mm]

mit [mm] \alpha=min{(\bruch{1}{2L};\bruch{r}{M})}=min{(\bruch{1}{2};\bruch{r}{M})} [/mm] ; mit [mm] M=\sup_{t\in[0;b]}|f(t;2*(1+r)|=\max_{t\in[0;b]}|cos(t)|\le [/mm]

Und hier komme ich nicht auf die Abschätzung. Ich denke, dass es soweit eigentlich ganz gut ist, nur wüsste ich nicht, wie ich hier eine passende Abschätzung treffe, die mir dann b liefert.

Gruß Ardbeg

        
Bezug
Picard Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Do 07.07.2016
Autor: Gonozal_IX

Hiho,

ich kann dir leider nicht viel zum Thema DGLs und Picard-Iterationen sagen, deine letzte Frage ist allerdings recht einfach zu beantworten:

Es gilt: [mm] $|\cos(t)| \le [/mm] 1$ und [mm] $\cos(0) [/mm] = 1$. Aus diesem Grund folgt für alle $b>0$

[mm] $\max_{t\in[0;b]}|cos(t)| [/mm] = 1 $

Gruß,
Gono

Bezug
        
Bezug
Picard Iteration: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 08.07.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]