matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenPicard-Lindelöf
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentialgleichungen" - Picard-Lindelöf
Picard-Lindelöf < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Lindelöf: Anwendungs-Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 12:10 So 10.07.2011
Autor: mathfrag

Aufgabe
Begründen Sie die Aussage:

Durch jeden Punkt [mm] (a,b)\in \IR^{2} [/mm] verläuft genau eine Lösung der Dgl. y´= (y+c) *cos (h(x)) (h stetig, [mm] c\in \IR); [/mm] diese Lösung ist auf  [mm] \IR [/mm] definiert.

Ich verstehe das Verfahren von Picard-Lindelöf nicht ganz. ICh habe mich wie folgt an die Aufgabe "getraut":

I.

[mm] \bruch{df}{dx} [/mm]

=cos(h(x)) I=[-a,a] J=[-b,b]

II.

[mm] Max|\bruch{df}{dx}|\le [/mm] L

[mm] \Rightarrow [/mm] cos |h(x)| [mm] \le [/mm] cos(0)=1=L


HIer habe ich bereits ein Problem, ich denke cosinus hat seinen Maximum bei 1 hat und deswegen setze x= 0... ist diese Überlegung korrekt?


III.
M=max |f(x,y)|= [mm] \max_{x,y \in \IR} [/mm]

ich nehme an x=a bzw a+1 und y=b bzw y+1 und setze im zweiten Schritt für cosinus den Wert 1 ist wegen II.

= |(a+c)*cosh(b)|=(a+c)*1=a+c

IV
[mm] \alpha= [/mm] min{1, [mm] \bruch{b}{M} [/mm] }

=min {1, [mm] \bruch{b}{a+c} [/mm] } =1

nehme hier 1, intuitiv, da ich nicht genau weiß wie ich mit dem Bruch umgehen soll

V.
[mm] J=[x_{0}- \alpha, x_{0} [/mm] + [mm] \alpha [/mm] ]
I=[a-1,a+1]

Für erläuterung ob ich auf dem richtigen Weg bin und ob meine Überlegungen so korrekt sind wäre ich sehr dankbar...

        
Bezug
Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 So 10.07.2011
Autor: fred97

Sei f(x,y):= (y+c)cos(h(x))

Dann ist doch

         $|f(x,y)-f(x,z)| [mm] \le [/mm] 1*|y-z|$

f genügt also auf [mm] \IR^2 [/mm] einer Lipschitzbedingung bezüglich y.

FRED

Bezug
                
Bezug
Picard-Lindelöf: Rückfrage
Status: (Frage) überfällig Status 
Datum: 13:48 So 10.07.2011
Autor: mathfrag

Vielen Dank.

y-z... Ok. Wofür steht die 1? war meine vermutung mit L= cos(o)=1 richtig? Wenn ich also nur bis Schritt 2 gehe, reicht es um nachzuweisen, dass durch jeden Punkt (a,b) [mm] \in \IR^2 [/mm] genau eine Lösung der DGL verläuft? und es zeigt auch, dass diese Lösung auf ganz [mm] \R [/mm] definiert ist?

Bezug
                        
Bezug
Picard-Lindelöf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 12.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]