matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikPermutationsstatistik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Permutationsstatistik
Permutationsstatistik < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationsstatistik: Definition
Status: (Frage) beantwortet Status 
Datum: 12:10 Mo 04.06.2012
Autor: dennis2

Aufgabe
Hallo, ich habe eine Frage zu folgender Definition einer [mm] \textit{linearen Permutationsstatistik}: [/mm]

Eine Abbildung [mm] $s\colon\Pi_n\to\mathbb{R}$ [/mm] gegeben durch [mm] $s(\pi):=\sum_{i=1}^{n}\alpha(i,\pi(i))$ [/mm] mit [mm] $(\alpha_{ij})=A\in\mathbb{R}^{n\times n}$ [/mm] heißt lineare Permutationsstatistik (Notation: [mm] $s^{(A)}(\pi)$) [/mm]

Wie ist diese Definition zu verstehen?


Also mal ein Beispiel. Sei [mm] $\Pi_3$ [/mm] die Menge aller Permutationen über [mm] $\left\{1,2,3\right\}$ [/mm] und betrachte aus dieser Menge [mm] $\pi=(1,3,2)$. [/mm]

Wie ist dann [mm] $s^{(A)}((1,3,2))$ [/mm] definiert?



Man hat jetzt irgendeine [mm] $3\times [/mm] 3$-Matrix $A$, z.B.

[mm] $\pmat{ 2 & 1,2 & 0,6 \\ 3 & 4 & 7 \\ 6 & 5 & 1 }$ [/mm]

Ist dann

[mm] $s^{(A)}(\pi)=\alpha(1,1)+\alpha(2,3)+\alpha(3,2)=2+7+5=14$? [/mm]


Ist [mm] $\alpha(i,\pi(i))$ [/mm] so gemeint?



Viele Grüße!

Dennis

        
Bezug
Permutationsstatistik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mo 04.06.2012
Autor: wieschoo

Hi

Diese Funktion kenn ich auch aus der Optimierung. Da du nur eine Frage zur Definition hast, denke ich mir, meinen Senf dazugeben zu dürfen.

> Hallo, ich habe eine Frage zu folgender Definition einer
> [mm]\textit{linearen Permutationsstatistik}:[/mm]
>  
> Eine Abbildung [mm]s\colon\Pi_n\to\mathbb{R}[/mm] gegeben durch
> [mm]s(\pi):=\sum_{i=1}^{n}\alpha(i,\pi(i))[/mm] mit
> [mm](\alpha_{ij})=A\in\mathbb{R}^{n\times n}[/mm] heißt lineare
> Permutationsstatistik (Notation: [mm]s^{(A)}(\pi)[/mm])

>  Wie ist diese Definition zu verstehen?

Eigentlich genau, wie sie da steht. Siehe unten

>  
>
> Also mal ein Beispiel. Sei [mm]\Pi_3[/mm] die Menge aller
> Permutationen über [mm]\left\{1,2,3\right\}[/mm] und betrachte aus
> dieser Menge [mm]\pi=(1,3,2)[/mm].

ok

>  
> Wie ist dann [mm]s^{(A)}((1,3,2))[/mm] definiert?
>  
>
>
> Man hat jetzt irgendeine [mm]3\times 3[/mm]-Matrix [mm]A[/mm], z.B.
>  
> [mm]\pmat{ 2 & 1,2 & 0,6 \\ 3 & 4 & 7 \\ 6 & 5 & 1 }[/mm]

Laut Definition ist A beliebig. Ich bin leider nicht von dem Gebiet (Resampling ?).

>  
> Ist dann
>
> [mm]s^{(A)}(\pi)=\alpha(1,1)+\alpha(2,3)+\alpha(3,2)=2+7+5=14[/mm]?

Genauso würde ich es verstehen, bzw. genauso wird es verstanden. In Wirklichkeit wäre es vielleicht besser gewesen

[mm]s:\Pi_n\times \IR^{n\times n}\to \IR,\quad s(\pi,A)\mapsto \sum_{i=1}^n\alpha_{i,\pi(i)}[/mm]
zu schreiben

>  
>
> Ist [mm]\alpha(i,\pi(i))[/mm] so gemeint?
>

Wenn es nur um den Wortlaut geht, dann schon.


Bezug
                
Bezug
Permutationsstatistik: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:45 Di 05.06.2012
Autor: dennis2

Vielen lieben Dank für die Antwort.

Hat mir geholfen. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]