matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesPermutationsmatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Permutationsmatrizen
Permutationsmatrizen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationsmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 10.11.2015
Autor: Anmahi

Aufgabe
Sei n [mm] \ge [/mm] 1 eine natürliche Zahl. Im Folgenden betrachten wir n x n Permutationsmatrizen. Zeigen Sie, dass sich jede Transposition als Produkt von einfachen Transpositionen schreiben lässt.

Tipp: Zeigen Sie dazu zunächst, dass für 1 [mm] \le [/mm] k < l-1 [mm] \le [/mm] n-1 gilt:
σ^{k,l} = σ^{k,k+1} [mm] \* [/mm] σ^{k+1,l} [mm] \* [/mm] σ^{k,k+1}.

Wie fange ich an, damit ich auf den Tipp komme? Und was bringt mir der Tipp? Ich kann nicht ganz nachvollziehen wie der Tipp mir hilft das zu zeigen.

        
Bezug
Permutationsmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:16 Mi 11.11.2015
Autor: hippias


> Sei n [mm]\ge[/mm] 1 eine natürliche Zahl. Im Folgenden betrachten
> wir n x n Permutationsmatrizen. Zeigen Sie, dass sich jede
> Transposition als Produkt von einfachen Transpositionen
> schreiben lässt.
>  
> Tipp: Zeigen Sie dazu zunächst, dass für 1 [mm]\le[/mm] k < l-1
> [mm]\le[/mm] n-1 gilt:
> σ^{k,l} = σ^{k,k+1} [mm]\*[/mm] σ^{k+1,l} [mm]\*[/mm] σ^{k,k+1}.
>  Wie fange ich an, damit ich auf den Tipp komme?

Ich verstehe Deine Frage nicht: Du musst nicht auf den Tip kommen, er ist Dir ja vorgegeben worden.

> Und was
> bringt mir der Tipp? Ich kann nicht ganz nachvollziehen wie
> der Tipp mir hilft das zu zeigen.

Wenn ein Tip nicht hilft, dann vergiss ihn und finde einen eigenen Beweisweg.
Was ich aber vermute, da ich mit Deiner Notation nicht vetraut bin, ist, dass der Hinweis besagt, wie Du [mm] $\sigma{k,l}$ [/mm] als ein Produkt von zwei einfachen Transpositionen und einem weiteren [mm] $\sigma{k',l}$ [/mm] schreiben kannst, wobei der Unterschied zwischen $k'$ und $l$ sich um $1$ verringert hat. Das riecht nach einer Induktion.

Bezug
                
Bezug
Permutationsmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 Mi 11.11.2015
Autor: Anmahi


> > Tipp: Zeigen Sie dazu zunächst, dass für 1 [mm]\le[/mm] k < l-1
> > [mm]\le[/mm] n-1 gilt:
> > σ^{k,l} = σ^{k,k+1} [mm]\*[/mm] σ^{k+1,l} [mm]\*[/mm] σ^{k,k+1}.

Aber da steht ja das ich den tipp zeigen soll




Bezug
                        
Bezug
Permutationsmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Mi 11.11.2015
Autor: hippias

Um den Tip zu zeigen, solltest Du Dir zuerst klar machen, wofür [mm] $\sigma^{k,l}$ [/mm] steht. Schreibe mir einmal, was das bedeutet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]