matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenPermutationsmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Permutationsmatrix
Permutationsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Mo 31.12.2012
Autor: Sqrt3

Aufgabe
Eine Permutationsmatrix ist eine quadratische Matrix, bei der in jeder Zeile und jeder Spalte genau ein Eintrag gleich 1 und alle anderen Einträge gleich 0 sind. Zeigen Sie: Die Menge P(n,K) aller n x n-Permutationsmatrizen ist eine Untergruppe von GL(n;K).

Also ich weiß, dass eine Permutationsmatrix aus den Elementen einer Standardbasis, also [mm] e_{1}, e_{2},...,e_{n}, [/mm] die jedoch nicht geordnet sind. Ich muss doch zuerst die Eigenschaft von Untergruppen an den Permutationsmatrizen nachprüfen und dann zeigen, dass die Menge aller P(n,K) eine Untergruppe von GL(n;K) ist. aber wie zeige ich . dass es genau eine Untergruppe von GL(n;K) ist?

        
Bezug
Permutationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Mo 31.12.2012
Autor: wieschoo


> Eine Permutationsmatrix ist eine quadratische Matrix, bei
> der in jeder Zeile und jeder Spalte genau ein Eintrag
> gleich 1 und alle anderen Einträge gleich 0 sind. Zeigen
> Sie: Die Menge P(n,K) aller n x n-Permutationsmatrizen ist
> eine Untergruppe von GL(n;K).
>  Also ich weiß, dass eine Permutationsmatrix aus den
> Elementen einer Standardbasis, also [mm]e_{1}, e_{2},...,e_{n},[/mm]

(*) Eigenschaft

> die jedoch nicht geordnet sind. Ich muss doch zuerst die
> Eigenschaft von Untergruppen an den Permutationsmatrizen
> nachprüfen und dann zeigen, dass die Menge aller P(n,K)
> eine Untergruppe von GL(n;K) ist. aber wie zeige ich . dass
> es genau eine Untergruppe von GL(n;K) ist?

Wie immer alle Untergruppenaxiome abklappern:

Es ist doch
[mm]\operatorname{GL}(n,K)=\{A\in K^{n\times n}| A\textrm{ invertierbar}\}[/mm]

und [mm]P(n,K)=\{P\in K^{n\times n}\;|\; P \textrm{ ist Permutationsmatrix}\}[/mm]

Untergruppeneigenschaften:

(U0) P(n,K) ist Teilmenge GL(n,K)
(U1) Für [mm]Q,R\in P(n,K)[/mm] ist auch QR in P(n,k)
(U3) Die Inverse von [mm]Q\in P(n,K)[/mm] muss auch in P(n,K) liegen.

Zu den Punkten:

(U0) sind alle Permutationsmatrizen in GL(n,K), also invertierbar. Wenn ja warum? Fertig.
(U1) Nimm dir zwei Permutationsmatrizen Q,R aus P(n,K). Mit der lustigen Summenschreibweise für [mm][/mm]QR=S[mm], also [/mm][mm] s_{ij}=\sum_{\ell=0}^k q_{i\ell}e_{\ell j}$ [/mm] und ein paar weiteren Überlegungen musst du zeigen, dass das Produkt QR invertierbar ist und die Eigenschaft (*) erfüllt ist

(U2) Wie sieht die inverse von einer Permutationsmatrix aus? Ohne Rechnen, erst nachdenken.

gruß
wieschoo

Bezug
                
Bezug
Permutationsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Mo 31.12.2012
Autor: Sqrt3

vielen dank dann werde ich das jetzt mal versuchen bzw morgen :D


Bezug
                        
Bezug
Permutationsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Mo 31.12.2012
Autor: wieschoo


> vielen dank dann werde ich das jetzt mal versuchen bis
> morgen


nächstes Jahr :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]