matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraPermutationsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Permutationsmatrix
Permutationsmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationsmatrix: LU-Zerlegung
Status: (Frage) beantwortet Status 
Datum: 12:42 Do 05.01.2006
Autor: revival

Hi!

Wir haben vor Weihnachten in LA über LU-Zerlegung gesprochen.
Dabei wurde unter anderem am Rande erwähnt, dass für

A  [mm] \in K^{n x n} [/mm] eine Permutationsmatrix P existiert, so dass PA eine LU-Zerlegung PA=LU hat (L ist invertierbar)

Leider haben wir das nie bewiesen. Ich wiederhole gerade den bisherigen Stoff und bin dabei darüber gestolpert.
Es wäre klasse, wenn mir jmd. einen Tipp geben könnte, wie man so etwas beweisen könnte, oder mich auf eine entsprechende Seite mit dem Beweis verweist.

Meine erste Überlegung war für

PA = LU, B = PA zu setzen
=> B = LU. Das wäre wahr - B besäße tatsächlich eine LU-Zerlegung - falls B sich durch elem. Zeilentransf. ohne Zeilenvertauschung auf obere Dreiecksmatrix transformieren ließe, richtig?
Für P gilt, dass das Inverse gleich dem Transponierten ist, also ist P auf jd. Fall invertierbar. Wenn jetzt auch A eine LU-Zerlegung besitzt, dann also auch B..

Scheint mir leider ungenau..

Würde mich über jede Hilfe von euch sehr freuen!

Vielen Dank im Voraus,

revival.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Permutationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Do 05.01.2006
Autor: mathiash

Hallo,

stell Dir vor, Du moechtest im Stile eines Gauss-Verfahrens eine LU-Zerlegung berechnen, dann bist Du hin und wieder gezwungen, von der verbleibenden Restmatrix
Zeilen zu vertauschen, und dies laesst sich durch eine ''elementare Permutationsmatrix''
(heisst das so ?) beschreiben. Das Produkt all dieser ist dann P. (So in etwa, oder ?)

Gruss,

Mathias

Bezug
                
Bezug
Permutationsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Do 05.01.2006
Autor: revival

"Das Produkt all dieser"? Meinst du damit aller Schritt für Schritt notwendigen Zeilenvertauschungen?

Bezug
                        
Bezug
Permutationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Sa 07.01.2006
Autor: Christian

Hallo.

> "Das Produkt all dieser"? Meinst du damit aller Schritt für
> Schritt notwendigen Zeilenvertauschungen?

[daumenhoch] Genau die sind gemeint!

Gruß,
Christian



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]