matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraPermutationsgruppe Sm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Permutationsgruppe Sm
Permutationsgruppe Sm < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationsgruppe Sm: Transpositionen
Status: (Frage) überfällig Status 
Datum: 21:09 Do 30.11.2006
Autor: Zwei.blum

Aufgabe
Es sei t eine Transposition und o eine beliebige Permutation [mm] \not= [/mm] e in Sm.
a) Zeige [mm] o\*to [/mm] (transorniert o) = [mm] to\*o \gdw ot\*t= o^{-1}t [/mm]
b)Untersuche, unter welchen Bedingungen (8an o und t = (i,j))
o und to kommutieren
c)Suche alle [mm] 0\inSm, o\not= [/mm] e mit der Eigenschaft, dass o und t0 für alle Transpositionen t [mm] \inSm [/mm] kommutieren. Zeige, dass dann m=3 oder (m gerade und [mm] o^{2}= [/mm] e) sein muss

Könnt ihr mir bitte helfen, ich versuche mich seid Dienstag an dieser Aufgabe und finde mich damit einfach nicht zurecht.
Ichhabe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Schon mal vielen Dank im Vorraus
Zweiblum

        
Bezug
Permutationsgruppe Sm: Rückfrage!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:07 Mo 04.12.2006
Autor: zahlenspieler


> Es sei t eine Transposition und o eine beliebige
> Permutation [mm]\not=[/mm] e in Sm.
>  a) Zeige [mm]o\*to[/mm] (transorniert o) = [mm]to\*o \gdw ot\*t= o^{-1}t[/mm]
>  
> b)Untersuche, unter welchen Bedingungen (8an o und t =
> (i,j))
>  o und to kommutieren
>  c)Suche alle [mm]0\inSm, o\not=[/mm] e mit der Eigenschaft, dass o
> und t0 für alle Transpositionen t [mm]\inSm[/mm] kommutieren. Zeige,
> dass dann m=3 oder (m gerade und [mm]o^{2}=[/mm] e) sein muss
>  Könnt ihr mir bitte helfen, ich versuche mich seid
> Dienstag an dieser Aufgabe und finde mich damit einfach
> nicht zurecht.
>  Ichhabe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Schon mal vielen Dank im Vorraus
>  Zweiblum

Hallo Zweiblum,
könnte es sein, daß bei Teil a) rechts vom Äquivalenzpfeil [mm]o^{t}*t =(o^{-1})^{t}[/mm]
stehen sollte? Denn wenn ich's so rechne, daß $t$ Faktor ist, komt [mm] $o^{2}=t$ [/mm] heraus. Damit wäre $to*o$ (der Ausdruck rechte Seite links vom Äquivalenzpfeil) die identische Permutation. Wenn aber [mm] $o*to=\id_{S_m}$ [/mm] gelten soll, muß [mm] $o^{-1}=to \gdw o=o^{-1}t$ [/mm] sein. $o$ hätte also Ordnung 4, aber $o*o$ wäre eine Transposition. Und das geht nicht: Ist $o$ ein 4er-Zykel, dann ist [mm] $o^2$ [/mm] Produkt von zwei Transpositionen.
Mfg
zahlenspieler

Bezug
        
Bezug
Permutationsgruppe Sm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Di 05.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]