matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikPermutationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Permutationen
Permutationen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:08 Fr 29.10.2010
Autor: icarus89

Aufgabe
Wie viele Permutationen von n Elementen gibt es, sodass alles komplett durcheinander ist? D. h.: für wieviele verschiedene Permutation [mm] \pi [/mm] gilt:
[mm] \pi(i)\not=i \forall [/mm] i

Heyho!

Irgendwie erkenn ich da noch nicht, wie das allgemein aussieht...
Ich hab mir das mal für die ersten paar n angeguckt:
1: 0
2: 1
3: 2
4: 9
5: 44 (?)

Meine erste Vermutung war (n-1)! Aber das hat sich durch die Beispiele nicht bewahrheitet...

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Fr 29.10.2010
Autor: reverend

Hallo icarus89,

da stimmt aber etwas an Deinen Ermittlungen nicht.

edit: offenbar doch. Ich lag falsch. Danke an Sax für den Hinweis samt eines produktiven Ansatzes!

> Irgendwie erkenn ich da noch nicht, wie das allgemein
> aussieht...
>  Ich hab mir das mal für die ersten paar n angeguckt:
>  1: 0
>  2: 1
>  3: 2
>  4: 9
>  5: 44 (?)
>  
> Meine erste Vermutung war (n-1)! Aber das hat sich durch
> die Beispiele nicht bewahrheitet...

Alles hiernach stimmt also nicht.

Richtig wäre:
[mm] 1\to0 [/mm]
[mm] 2\to1 [/mm]
[mm] 3\to2 [/mm]
[mm] 4\to6 [/mm]
[mm] 5\to24 [/mm]

Deine erste Vermutung war richtig. Du musst nur einen Weg finden, sie auch zu zeigen. Und sie gilt übrigens nicht für n=1.

Nennen wir die Zahl der vollständig vermischten Permutationen [mm] \tau{(n)}. [/mm]

Dann ist leicht zu zeigen, dass für n>1 gilt: [mm] \tau{(n+1)}=n\tau{(n)}. [/mm] Überleg mal, warum. Wie kommt man von k zu k+1?

Grüße
reverend


Bezug
                
Bezug
Permutationen: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 00:07 Sa 30.10.2010
Autor: Sax

Hi,

das stimmt nicht, die ursprünglich genannten Zahlen (einschließlich der 44) sind richtig.

Es gilt die Rekursion

[mm] \tau(1)=0 [/mm] , [mm] \tau(2)=1 [/mm]  und  [mm] \tau(n) [/mm] = [mm] (n-1)*(\tau(n-1)+\tau(n-2)) [/mm] für [mm] n\ge2 [/mm]

Gruß Sax.

Bezug
                
Bezug
Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:09 Sa 30.10.2010
Autor: icarus89


> Hallo icarus89,
>  
> da stimmt aber etwas an Deinen Ermittlungen nicht.
>  
> > Irgendwie erkenn ich da noch nicht, wie das allgemein
> > aussieht...
>  >  Ich hab mir das mal für die ersten paar n angeguckt:
>  >  1: 0
>  >  2: 1
>  >  3: 2
>  >  4: 9
>  >  5: 44 (?)
>  >  
> > Meine erste Vermutung war (n-1)! Aber das hat sich durch
> > die Beispiele nicht bewahrheitet...
>
> Richtig wäre:
>  [mm]1\to0[/mm]
>  [mm]2\to1[/mm]
>  [mm]3\to2[/mm]
>  [mm]4\to6[/mm]
>  [mm]5\to24[/mm]
>  
> Deine erste Vermutung war richtig. Du musst nur einen Weg
> finden, sie auch zu zeigen. Und sie gilt übrigens nicht
> für n=1.
>  
> Nennen wir die Zahl der vollständig vermischten
> Permutationen [mm]\tau{(n)}.[/mm]
>  
> Dann ist leicht zu zeigen, dass für n>1 gilt:
> [mm]\tau{(n+1)}=n\tau{(n)}.[/mm] Überleg mal, warum. Wie kommt man
> von k zu k+1?
>  
> Grüße
>  reverend
>  

Mmmh? Aber ich komm bei n=4 definitiv auf 9 Permutationen...
Oder bin ich jetzt blöd?

2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321

Das sind doch 9...

Oder versteh ich da irgendwas falsch???

Bezug
                        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Sa 30.10.2010
Autor: reverend

Hallo nochmal,

nein, Du liegst völlig richtig und ich bin blöd. Sax hat die richtige Idee, aber Du musst noch herausfinden, warum diese Rekursion gilt.
Wenn Du willst, erkläre ich gern, wie ich auf meine falsche Herleitung kam, aber das ist wahrscheinlich nicht hilfreich, sondern eher verwirrend.

Pardon!

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]