matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraPermutationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Permutationen
Permutationen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:41 Mo 23.05.2005
Autor: NECO

Hallo Liebe Mathematiker/in,

Ich komme mit diese Aufgabe nich klar. Ich muss es aber dringend lösen.

Sei  [mm] \alpha \in \summe_{n} [/mm] eine Permutation mit [mm] sign(\alpha)=1. [/mm] Zeigen Sie, dass man [mm] \alpha [/mm] schreiben kann als [mm] \alpha_{1} \circ........ \circ\alpha_{k} [/mm] wobei [mm] \alpha [/mm] Zyklen der Form [mm] \alpha=(i_{1}i_{2}i_{3}) [/mm] sind, i=1,.......k.

Ich danke für eure Mühe.

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:24 Di 24.05.2005
Autor: Hexe

Also es gibt da den Satz, das alle Permutationen von der Menge (ij) der Transpositionen erzeugt wird. Wenn jetzt die Permutation gerade ist dann heisst das das sie von einer geraden anzahl an Transpositionen  erzeugt wird . Jetzt muss ich nur noch Zeigen dass aus 2 Transpositionen immer ein oder zwei Dreierzyklen werden:
1. Fall  (ik)(ij)=(ijk)
2. Fall  (kl)(ij)=(kil)(ijk)
Also hab ich was ich brauche.

Bezug
                
Bezug
Permutationen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:35 Di 24.05.2005
Autor: NECO

Hallo, Bist du sicher dass das für ein Beweis reicht?
Kannst du bitte kurz das erklären was du geschrieben hast. ICh habe nichts verstanden. :-)  DAnke

Bezug
                        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Di 24.05.2005
Autor: Stefan

Hallo NECO!

Hexe hat den Satz zitiert, dass sich jede Permutation [mm] $\alpha$ [/mm] mit [mm] $sign(\alpha)=1$ [/mm] als Produkt einer geraden Anzahl von Zweierzykeln (=Transpositionen) schreiben lässt:

[mm] $\alpha [/mm] = [mm] (i_1i_2)(i_3i_4)\ldots(i_{4n-3}i_{4n-2})(i_{4n-1}i_{4n})$. [/mm]

Nun hat Hexe gezeigt, dass immer zwei dieser Zweierzykel zu einem Dreierzykel verschmelzen.

Übrig bleiben also nur Dreierzykel.

Damit lässt sich [mm] $\alpha$ [/mm] als Produkt von Dreierzykeln schreiben.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]