matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperPermutationen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Permutationen
Permutationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 04.05.2010
Autor: MontBlanc

Aufgabe
Wieviele Untergruppen der Größe 3 gibt es in der symmetrischen Gruppe [mm] S_5. [/mm]

Gibt es eine nicht-zyklische Untergruppe mit Größe 4 in [mm] S_5 [/mm]

Hi,

für die erste Frage war es denke ich am sinnvollsten die verschiedenen Zyklen aufzuschreiben, die entscheidenden sind hier alle mit Länge 3 und dann jeweils 2 mal Länge 1. Da 3 prim ist und damit alle Untergruppen der Größe 3 zyklisch sind, ist 3 auch deren Ordnung. Finden muss ich also alle zyklischen Untergruppen mit größe 3.

So demnach sollte jede der besagten Untergruppen die Identität sowie 2 Elemente mit Ordnung 3 aufweisen. Die Anzahl an 3-Zyklen ist [mm] \vektor{5 \\ 3}*2 [/mm] . Jetzt kommt der Teil den ich nicht verstehe, und zwar, wieso muss ich die Anzahl der 3-Zyklen jetzt noch mit [mm] \bruch{1}{2} [/mm] multiplizieren um auf die Anzahl der Gruppen zu kommen ? Ich kann es mir einfach nicht anschaulich klar machen. Hat es etwas damit zu tun, dass die Identität in jeder Gruppe sein muss ?

Bei der letzten Frage läuft es mMn auf probieren hinaus, geht es vielleicht auch etwas eleganter ?

lg

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Di 04.05.2010
Autor: Arcesius

Hallo

> Wieviele Untergruppen der Größe 3 gibt es in der
> symmetrischen Gruppe [mm]S_5.[/mm]
>  
> Gibt es eine nicht-zyklische Untergruppe mit Größe 4 in
> [mm]S_5[/mm]
>  Hi,
>  
> für die erste Frage war es denke ich am sinnvollsten die
> verschiedenen Zyklen aufzuschreiben, die entscheidenden
> sind hier alle mit Länge 3 und dann jeweils 2 mal Länge
> 1. Da 3 prim ist und damit alle Untergruppen der Größe 3
> zyklisch sind, ist 3 auch deren Ordnung. Finden muss ich
> also alle zyklischen Untergruppen mit größe 3.
>  

Nur so als Zwischenfrage.. hatter ihr die Sylowsätze schon?

> So demnach sollte jede der besagten Untergruppen die
> Identität sowie 2 Elemente mit Ordnung 3 aufweisen. Die

Gut, das ist richtig.

> Anzahl an 3-Zyklen ist [mm]\vektor{5 \\ 3}*2[/mm] . Jetzt kommt der
> Teil den ich nicht verstehe, und zwar, wieso muss ich die
> Anzahl der 3-Zyklen jetzt noch mit [mm]\bruch{1}{2}[/mm]
> multiplizieren um auf die Anzahl der Gruppen zu kommen ?
> Ich kann es mir einfach nicht anschaulich klar machen. Hat
> es etwas damit zu tun, dass die Identität in jeder Gruppe
> sein muss ?

Ne, mit der Identität hat es nichts zu tun. Aber du hast es ja schon selbst erwähnt! Jede Untergruppe der Ordnung 3 muss ZWEI Elemente der Ordnung 3 beinhalten.. somit, wenn du n 3er Zykel hast, dann haste n/2 Untergruppen der Ordnung 3.

>  
> Bei der letzten Frage läuft es mMn auf probieren hinaus,
> geht es vielleicht auch etwas eleganter ?

Jops.. Überlege dir, was für Elemente eine solche Untergruppe beinhalten kann und überprüfe dann, von wievielen Elementen diese Untergruppen jeweils erzeugt werden.

>  
> lg

Grüsse, Amaro

Bezug
                
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Di 04.05.2010
Autor: MontBlanc

Hallo,

danke für deine antwort! Hat mir weitergeholfen! Nein, wir hatten die Sylow-Sätze noch nicht.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]