matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikPermutationen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Diskrete Mathematik" - Permutationen
Permutationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 10.02.2014
Autor: mathlooser

Hallo Leute,

ich wende mich wieder an euch weil ich an einem Punkt nicht weiterkomme:

Ein 4-Zykel g = (1524) "bildet" folgende Permutaion:

g = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 &2 } [/mm]

Es gilt: g = (15)(52)(24) = (14)(12)(15)

Warum?

Die linke Seite ist ja nichts anderes als das Produkt von (1524) mit folgender Regel:

[mm] (x_{1} x_{2} [/mm] ... [mm] x_{k}) [/mm] = [mm] (x_{1} x_{2})(x_{2} x_{3}) [/mm] ... [mm] (x_{k-1} x_{k}) [/mm]

Wie komme ich auf die Rechte Seite? Im Skript gibt es keine Erklaerung dafuer.

Gruss

mathlooser

        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mo 10.02.2014
Autor: MaslanyFanclub

Hallo,

> Hallo Leute,
>  
> ich wende mich wieder an euch weil ich an einem Punkt nicht
> weiterkomme:
>  
> Ein 4-Zykel g = (1524) "bildet" folgende Permutaion:
>  
> g = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 &2 }[/mm]
>  

Das sind verschiedene Darstellungen desselben. Beides sind Permutattionen. Die Zykeldarstellung ist mMn deutlich überlegen.

> Es gilt: g = (15)(52)(24) = (14)(12)(15)
>  
> Warum?

Einfach mal nachrechnen, d.h. schlimmstenfalls schauen was die Bilder von 1,2,3,4,5 sind.

> Die linke Seite ist ja nichts anderes als das Produkt von
> (1524) mit folgender Regel:
>  
> [mm](x_{1} x_{2}[/mm] ... [mm]x_{k})[/mm] = [mm](x_{1} x_{2})(x_{2} x_{3})[/mm] ...
> [mm](x_{k-1} x_{k})[/mm]
>  
> Wie komme ich auf die Rechte Seite? Im Skript gibt es keine
> Erklaerung dafuer.

Nicht jede Gleichheit hat eine, wie auch immer geartete, Erklärung.

> Gruss
>  
> mathlooser


Bezug
                
Bezug
Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mo 10.02.2014
Autor: mathlooser

Hallo MaslanyFanclub,

> Das sind verschiedene Darstellungen desselben. Beides sind
> Permutattionen.

Danke fuer den Hinweis, aber das war nicht die Frage.

> Die Zykeldarstellung ist mMn deutlich überlegen.

In wiefern hilft mir das?

> Einfach mal nachrechnen, d.h. schlimmstenfalls schauen was die Bilder
> von 1,2,3,4,5 sind.

Die Bilder sind bereits bekannt und stehen oben.

> Nicht jede Gleichheit hat eine, wie auch immer geartete, Erklärung.

Das wage ich doch schwer zu bezweifeln.

Danke trotzdem fuer den Versuch.

Ich komme leider nach wie vor nicht drauf wie man von

(15)(52)(24) nach (14)(12)(15)  kommt.

Gruss

mathlooser

Bezug
                        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mo 10.02.2014
Autor: Sax

Hi,

du glaubst an die Regel [mm] (x_1x_2x_3...x_k)=(x_1x_2)(x_2x_3)(x_3x_4)...(x_{k-1}x_k). [/mm]
Warum ? Nur weil sie im Skreipt steht, oder weil du sie selber nachgeprüft (einfach nachrechnen, wenn dich das nicht überzeugt: Induktion) hast ?

Genauso gibt es die Regel [mm] (x_1x_2x_3...x_k)=(x_1x_k)(x_1x_{k-1})...(x_1x_3)(x_1x_2). [/mm] Auch wenn die nicht im Skript steht, kannst du dich leicht von ihrer Richtigkeit überzeugen. Den Tipp hatte dir doch MF schon gegeben. Du musst ihn aber auch beherzigen , annehmen und durchführen.

Gruß Sax.

Bezug
                                
Bezug
Permutationen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:45 Mo 10.02.2014
Autor: mathlooser

Hi Sax,

danke fuer deine Antwort.

> Hi,
>  
> du glaubst an die Regel
> [mm](x_1x_2x_3...x_k)=(x_1x_2)(x_2x_3)(x_3x_4)...(x_{k-1}x_k).[/mm]
>  Warum ? Nur weil sie im Skreipt steht, oder weil du sie
> selber nachgeprüft (einfach nachrechnen, wenn dich das
> nicht überzeugt: Induktion) hast ?

Also ich glaube an die Regel, weil Sie im Skript steht und gleichzeitig auch fuer mich nachvollziehbar ist. Nachvollziehbar ist Sie, weil ich eben die Werte mal eingesetzt habe.

[mm](x_1x_2x_3...x_k)=(x_1x_2)(x_2x_3)(x_3x_4)...(x_{k-1}x_k).[/mm]

(1542) = (15)(54)(42) hier ist mir auch die Rueckrichtung klar, also wie man von (15)(54)(42) auf (1542) kommt.

Was genau soll ich nachrechnen?

Wenn ich jetzt versuche aus den Transpositionen (14)(12)(15) wieder ein Zykel der Form (1524) zu machen, gelingt mir das auch(siehe letzte Frage), aber ich weiss eben nicht, wie man auf diese Werte (14)(12)(15) kommt.

Ich drueck es mal anders aus:

Gegeben ist g = (1524).

Bitte schreiben Sie g als Produkt von k-1 Transpositionen in allen moeglichen Formen.

Ich koennte nur ein Produkt von Transpositionen angeben, naemlich:  (15)(54)(42)

> Genauso gibt es die Regel
> [mm](x_1x_2x_3...x_k)=(x_1x_k)(x_1x_{k-1})...(x_1x_3)(x_1x_2).[/mm]

Ok, waere fuer mich aber auch nicht nachvollziehbar.

> Auch wenn die nicht im Skript steht, kannst du dich leicht
> von ihrer Richtigkeit überzeugen.

Wie?

> Den Tipp hatte dir doch
> MF schon gegeben. Du musst ihn aber auch beherzigen ,
> annehmen und durchführen.

Das wuerde ich liebend gern, wenn ich wuesste wie.

Gruss

mathlooser

Bezug
                                        
Bezug
Permutationen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 12.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:35 Mo 10.02.2014
Autor: MaslanyFanclub


> Hallo MaslanyFanclub,
>  
> > Das sind verschiedene Darstellungen desselben. Beides sind
>  > Permutattionen.

>
> Danke fuer den Hinweis, aber das war nicht die Frage.
>  

Das war auch nicht die Antwort auf die Frage.

> > Die Zykeldarstellung ist mMn deutlich überlegen.
>  
> In wiefern hilft mir das?

Keine Ahung, allgemeine Lebenshilfe?

> > Einfach mal nachrechnen, d.h. schlimmstenfalls schauen was
> die Bilder
> > von 1,2,3,4,5 sind.
>  
> Die Bilder sind bereits bekannt und stehen oben.

oder auch nicht, siehe weiter unten.

> > Nicht jede Gleichheit hat eine, wie auch immer geartete,
> Erklärung.
>  
> Das wage ich doch schwer zu bezweifeln.

Das ist deine Meinung.

> Danke trotzdem fuer den Versuch.

Bin ich der Einzige, der "Danke trotzdem" als "Eigentlich hättest du es gleich lassen sollen" liest?

> Ich komme leider nach wie vor nicht drauf wie man von
>  
> (15)(52)(24) nach (14)(12)(15)  kommt.

Eine Gleichheit ist kein Weg von A nach B.

> Gruss
>  
> mathlooser


Bezug
        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Mo 10.02.2014
Autor: HJKweseleit


> Hallo Leute,
>  
> ich wende mich wieder an euch weil ich an einem Punkt nicht
> weiterkomme:
>  
> Ein 4-Zykel g = (1524) "bildet" folgende Permutaion:
>  
> g = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 &2 }[/mm]
>  
> Es gilt: g = (15)(52)(24) = (14)(12)(15)
>  
> Warum?
>  
> Die linke Seite ist ja nichts anderes als das Produkt von
> (1524) mit folgender Regel:
>  
> [mm](x_{1} x_{2}[/mm] ... [mm]x_{k})[/mm] = [mm](x_{1} x_{2})(x_{2} x_{3})[/mm] ...
> [mm](x_{k-1} x_{k})[/mm]

-------------------------------------------------------------

Jeder 2-Zykel vertauscht nur gerade 2 Elemente. Daher gilt:
(15)(52)(24)=[mm]\pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 4 &1 }[/mm][mm]\pmat{ 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 4 &2 }[/mm][mm]\pmat{ 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 &5 }[/mm]

Jetzt musst du dieses von rechts nach links abarbeiten:
1 [mm] \mapsto [/mm] 1 [mm] \mapsto [/mm] 1 [mm] \mapsto [/mm] 5
2 [mm] \mapsto [/mm] 4 [mm] \mapsto [/mm] 4 [mm] \mapsto [/mm] 4
3 [mm] \mapsto [/mm] 3 [mm] \mapsto [/mm] 3 [mm] \mapsto [/mm] 3
4 [mm] \mapsto [/mm] 2 [mm] \mapsto [/mm] 5 [mm] \mapsto [/mm] 1  Wenn dir diese Zeile klar ist, hast du es verstanden.
5 [mm] \mapsto [/mm] 5 [mm] \mapsto [/mm] 2 [mm] \mapsto [/mm] 2

Also entspricht das Ganze (1 5 2 4).

Jetzt mach mal selber das Ganze genau so mit (14)(12)(15).

_______-----------------------------____________


>  
> Wie komme ich auf die Rechte Seite? Im Skript gibt es keine
> Erklaerung dafuer.
>  
> Gruss
>  
> mathlooser


Bezug
                
Bezug
Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Mo 10.02.2014
Autor: mathlooser

Hallo,

Danke fuer die Antwort.

Alles klar. Also:

(14)(12)(15) = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 3 & 1 & 5 }\pmat{ 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 }\pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 4 & 1 } [/mm]

1 $ [mm] \mapsto [/mm] $ 5 $ [mm] \mapsto [/mm] $ 5 $ [mm] \mapsto [/mm] $ 5
2 $ [mm] \mapsto [/mm] $ 2 $ [mm] \mapsto [/mm] $ 1 $ [mm] \mapsto [/mm] $ 4
3 $ [mm] \mapsto [/mm] $ 3 $ [mm] \mapsto [/mm] $ 3 $ [mm] \mapsto [/mm] $ 3
4 $ [mm] \mapsto [/mm] $ 4 $ [mm] \mapsto [/mm] $ 4 $ [mm] \mapsto [/mm] $ 1
5 $ [mm] \mapsto [/mm] $ 1 $ [mm] \mapsto [/mm] $ 2 $ [mm] \mapsto [/mm] $ 2

Entspricht: (1524)

Bis hierhin ist alles klar.

Ich kann g = (1542) als g = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 2 & 4 } [/mm] schreiben, weil eben immer der rechte Nachbar das Bild darstellt.

Z.B. [mm] g(x_{1}) [/mm] = g(1) = [mm] x_{1+1} [/mm] = [mm] x_{2} [/mm] = 5 usw.

Ausserdem kann man das 4-Zykel (1542) als Produkt von 4-1 = 3

Transpositionen darstellen:

(15)(54)(42). Das leuchtet auch ein. Aber wie "berechne" ich die Transpositionen (14)(12)(15)?

Mir fehlt quasi der Weg von (1542) nach (14)(12)(15)

Gruss

mathlooser

Bezug
                        
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:24 Mo 10.02.2014
Autor: MaslanyFanclub

Oben schriebst du mir noch die Bilder seien klar.
Jetzt also doch nicht?



Bezug
                        
Bezug
Permutationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mo 10.02.2014
Autor: HJKweseleit


> Hallo,
>  
> Danke fuer die Antwort.
>  
> Alles klar. Also:
>  
> (14)(12)(15) = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 3 & 1 & 5 }\pmat{ 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 }\pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 4 & 1 }[/mm]
>  
> 1 [mm]\mapsto[/mm] 5 [mm]\mapsto[/mm] 5 [mm]\mapsto[/mm] 5
> 2 [mm]\mapsto[/mm] 2 [mm]\mapsto[/mm] 1 [mm]\mapsto[/mm] 4
> 3 [mm]\mapsto[/mm] 3 [mm]\mapsto[/mm] 3 [mm]\mapsto[/mm] 3
> 4 [mm]\mapsto[/mm] 4 [mm]\mapsto[/mm] 4 [mm]\mapsto[/mm] 1
>  5 [mm]\mapsto[/mm] 1 [mm]\mapsto[/mm] 2 [mm]\mapsto[/mm] 2
>  
> Entspricht: (1524)
>  
> Bis hierhin ist alles klar.
>  
> Ich kann g = (1542) als g = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 2 & 4 }[/mm]
> schreiben, weil eben immer der rechte Nachbar das Bild
> darstellt.
>  

Verdreher!!! (1524)


> Z.B. [mm]g(x_{1})[/mm] = g(1) = [mm]x_{1+1}[/mm] = [mm]x_{2}[/mm] = 5 usw.
>  
> Ausserdem kann man das 4-Zykel (1542) als Produkt von 4-1 =
> 3

>  
> Transpositionen darstellen:
>  
> (15)(54)(42). Das leuchtet auch ein. Aber wie "berechne"
> ich die Transpositionen (14)(12)(15)?
>  
> Mir fehlt quasi der Weg von (1542) nach (14)(12)(15)
>  
> Gruss
>  
> mathlooser


Bezug
                                
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Do 13.02.2014
Autor: mathlooser

Hallo,

> Verdreher!!! (1524)

Danke fuer den Hinweis.

Ich habe es mittlerweile verstanden.

Gruss und vielen dank fuer die sehr Hilfreiche Antwort.

mathlooser

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]