matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenPermutation: Transposition
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Permutation: Transposition
Permutation: Transposition < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Transposition: Frage zu Transpositionen
Status: (Frage) beantwortet Status 
Datum: 20:47 Mi 31.01.2007
Autor: uhu_84

Aufgabe
Sei [mm] x_{1} [/mm] Permutation von {1, 2, 3, 4, 5, 6} gegeben durch

[mm] x_{1} [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm]

Stelle die Permutation als Produkt von Transposition dar?

Hallo miteinander

Ich habe eine Frage zu den Transpositionen. Ich habe folgendes aufgeschrieben:

[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 5 & 6 } \pmat{ 2 & 5 }\pmat{ 3 & 4 } [/mm]

Korrigiert wurde:
[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 2 & 5 } \pmat{ 5 & 6 }\pmat{ 3 & 4 } [/mm]

Jetzt: ist die Reihenfolge bei den Transpositionen eindeutig?

Falls dem so ist, kann mir jemand bitte erklaeren, wieso die Korrektur richtig ist und meine Version falsch und wie ich die richtige Reihenfolge der einzelnen Transpositionen bekommen wuerde?

Uebrigens: Wäre das hier auch korrekt?

[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 6 & 5 } \pmat{ 5 & 2 }\pmat{ 4 & 3 } [/mm]

und das hier, ist das auch eine korrekte Transposition?

[mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2} [/mm] = [mm] \pmat{ 5 & 6 } \pmat{ 5 & 2 }\pmat{ 3 & 4 } [/mm]

Ich bin der Meinung, dass alle Moeglichkeiten korrekt sind. Oder liege ich da vollkommen falsch?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Permutation: Transposition: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 31.01.2007
Autor: Walde

Hi Uhu,

> Sei [mm]x_{1}[/mm] Permutation von {1, 2, 3, 4, 5, 6} gegeben durch
>
> [mm]x_{1}[/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm]
>  
> Stelle die Permutation als Produkt von Transposition dar?
>  Hallo miteinander
>  
> Ich habe eine Frage zu den Transpositionen. Ich habe
> folgendes aufgeschrieben:
>  
> [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 5 & 6 } \pmat{ 2 & 5 }\pmat{ 3 & 4 }[/mm]
>  
> Korrigiert wurde:
>  [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 2 & 5 } \pmat{ 5 & 6 }\pmat{ 3 & 4 }[/mm]
>  
> Jetzt: ist die Reihenfolge bei den Transpositionen
> eindeutig?

Eigentlich nein.Es ist egal, ob es heisst
[mm] \pmat{ 2 & 5 }\pmat{ 5 & 6 }\pmat{ 3 & 4 } [/mm] oder
[mm] \pmat{ 3 & 4 }\pmat{ 2 & 5 }\pmat{5 & 6 } [/mm] oder
[mm] \pmat{ 2 & 5 }\pmat{ 3 & 4 }\pmat{ 5 & 6 } [/mm]

Das liegt daran, dass [mm] \pmat{ 3 & 4 } [/mm] zu den anderen Transpositionen Elementfremd sind, quasi einem anderen Zyklus angehören. Innerhalb eines Zyklus, ist die Reihenfolge wichtig, wobei z.B. [mm] \pmat{ 3 & 4 } [/mm] und [mm] \pmat{ 4 & 3 } [/mm] natürlich dasselbe sind.



>  
> Falls dem so ist, kann mir jemand bitte erklaeren, wieso
> die Korrektur richtig ist und meine Version falsch und wie
> ich die richtige Reihenfolge der einzelnen Transpositionen
> bekommen wuerde?

Du nimmst eine Zahl und gehst von RECHTS NACH LINKS deine Transpositionen durch und schaust für jede Klammer einmal, auf was sie abbildet.Wenn die Zahl durch Abbildung verändert wurde, musst du im Weiteren mit der verändert Zahl kucken,ob sie weiterabgebildet wird. Klingt kompliziert, aber zwei Beispiele machen es (hoffentlich deutlich):

Beispiel mit 2:

Bei [mm] \pmat{ 3 & 4 } [/mm] passiert nichts mit der 2
bei [mm] \pmat{ 5 & 6 } [/mm] passiert nichts mit der 2
bei [mm] \pmat{ 2 & 5 } [/mm] wird die 2 auf 5 abgebildet (so soll es auch sein)

beispiel mit 6

Bei [mm] \pmat{ 3 & 4 } [/mm] passiert nichts mit der 6
bei [mm] \pmat{ 5 & 6 } [/mm] wird die 6 auf 5 abgebildet, von jetzt ab, musst du für die 5 kucken!
bei [mm] \pmat{ 2 & 5 } [/mm] wird die 5 auf 2 abgebildet

also insgesamt die 6 auf die 2 und so steht es auch in der Permutation.





>  
> Uebrigens: Wäre das hier auch korrekt?
>
> [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 6 & 5 } \pmat{ 5 & 2 }\pmat{ 4 & 3 }[/mm]
>  
> und das hier, ist das auch eine korrekte Transposition?
>  
> [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 4 & 3 & 6 & 2}[/mm] =
> [mm]\pmat{ 5 & 6 } \pmat{ 5 & 2 }\pmat{ 3 & 4 }[/mm]
>  
> Ich bin der Meinung, dass alle Moeglichkeiten korrekt sind.
> Oder liege ich da vollkommen falsch?

Ja du liegst falsch,beide sind nicht richtig (siehe oben)

Jetzt verstanden wie man die Transpositionen liest?

L G walde

Bezug
                
Bezug
Permutation: Transposition: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:38 Mi 31.01.2007
Autor: uhu_84

Herzlichen Dank, jetzt ist mir alles klar. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]