matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenPermutation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Determinanten" - Permutation
Permutation < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Sa 21.04.2012
Autor: meep

Aufgabe
Stellen Sie die folgenden Permutationen als Produkt von Transpositionen dar und geben Sie das Signum der Permutationen an.

a)

[mm] \sigma_1 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6\\ 3 & 5 & 2 & 6 & 4 & 1 } [/mm]

b)

[mm] \sigma_2 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 4 & 5 & 3 & 6 & 8 & 2 } [/mm]

hallo zusammen,

also ich hab das mal wie folgt gelöst:

zu a)

[mm] \sigma_1 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6\\ 3 & 5 & 2 & 6 & 4 & 1 } [/mm] = (1,3,2,5,4,6) = (1,6)(1,4)(1,5)(1,2)(1,3)

zu b)

[mm] \sigma_2 [/mm] := [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 7 & 4 & 5 & 3 & 6 & 8 & 2 } [/mm] = (1)(2,7,8)(3,4,5) (6) = (1)(2,8)(2,7)(3,5)(3,4)(6)

erstmal die frage ist das richtig ? und falls ja wie bestimme ich nun das Signum, habs auf wikipedia leider nicht wirklich verstanden.

liebe grüße

meep

        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Sa 21.04.2012
Autor: Schadowmaster

moin meep,

Die Zerlegungen sehen gut aus.
Wenn du das selbst überprüfen möchtest dann setze doch einfach mal die Zahlen $1$ bis $8$ ein und guck, was deine Transpositionen damit machen.
Wenn sie das gleiche machen wie die Ausgangspermutationen bist du fertig, denn zwei Abbildungen sind nach Definition genau dann gleich, wenn sie für alle Elemente aus dem Definitionsbereich den gleichen Wert ergeben.
Für das Signum musst du nun, wo du die Zerlegung bereits hast, einfach die Anzahl der Transpositionen zählen. Ist $k$ diese Anzahl, so ist [mm] $(-1)^k$ [/mm] das Signum.
Dass du damit das Signum erhälst  und dass es überhaupt wohldefiniert ist (d.h. egal wie du die Permutation zerlegst, die Anzahl der Transpositionen ist immer gerade oder ungerade - diese Anzahl ist nämlich nicht eindeutig!) das sollte dein Prof entweder schon gezeigt haben oder noch zeigen, du wirst es zumindest sicher irgendwo in deinem Skript finden.


lg

Schadow

Bezug
                
Bezug
Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Sa 21.04.2012
Autor: meep

Vielen lieben dank Schadow, das hat mir geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]